Exercise training is commonly prescribed for treatment of nonalcoholic fatty liver disease (NAFLD). We sought to determine whether exercise training prevents the development of NAFLD in Otsuka Long-Evans Tokushima Fatty (OLETF) rats and to elucidate the molecular mechanisms underlying the effects of exercise on hepatic steatosis. Four-week-old OLETF rats were randomly assigned to either a sedentary control group (Sed) or a group given access to voluntary running wheels for 16 wk (Ex). Wheels were locked 2 days before euthanasia in the Ex animals, and both groups were euthanized at 20 wk old. Voluntary wheel running attenuated weight gain and reduced serum glucose, insulin, free fatty acids, and triglycerides in Ex animals compared with Sed (P < 0.001). Ex animals exhibited significantly reduced hepatic triglyceride levels and displayed fewer lipid droplets (Oil Red O staining) and reduced lipid droplet size compared with Sed. Wheel running increased by threefold the percent of palmitate oxidized completely to CO(2) in the Ex animals but did not alter AMP-activated protein kinase-alpha (AMPKalpha) or AMPK phosphorylation status. However, fatty acid synthase and acetyl-coenzyme A carboxylase (ACC) content were significantly reduced (approximately 70 and approximately 35%, respectively), and ACC phosphorylation and cytochrome c content were significantly elevated (approximately 35 and approximately 30%, respectively) in the Ex animals. These results unequivocally demonstrate that daily physical activity attenuates hepatic steatosis and NAFLD in an obese rodent model and suggest that this effect is likely mediated, in part, through enhancement of hepatic fatty acid oxidation and reductions in key protein intermediates of fatty acid synthesis.
Background & Aims-In this study, we sought to determine the temporal relationship between hepatic mitochondrial dysfunction, hepatic steatosis and insulin resistance, and to examine their potential role in the natural progression of non-alcoholic fatty liver disease (NAFLD) utilising a sedentary, hyperphagic, obese, Otsuka Long-Evans Tokushima Fatty (OLETF) rat model.
Fatty liver has been linked to low aerobic fitness, but the mechanisms are unknown. We previously reported a novel model in which rats were artificially selected to be high capacity runners (HCR) and low capacity runners (LCR) that in a sedentary condition have robustly different intrinsic aerobic capacities. We utilized sedentary HCR/LCR rats (generation 17; max running distance equalled 1514 ± 91 vs. 200 ± 12 m for HCR and LCR, respectively) to investigate if low aerobic capacity is associated with reduced hepatic mitochondrial oxidative capacity and increased susceptibility to hepatic steatosis. At 25 weeks of age, LCR livers displayed reduced mitochondrial content (reduced citrate synthase activity and cytochrome c protein) and reduced oxidative capacity (complete palmitate oxidation in hepatic mitochondria (1.15 ± 0.13 vs. 2.48 ± 1.1 nm g −1 h, P < 0.0001) and increased peroxisomal activity (acyl CoA oxidase and catalase activity) compared to the HCR. The LCR livers also displayed a lipogenic phenotype with higher protein content of both sterol regulatory element binding protein-1c and acetyl CoA carboxylase. These differences were associated with hepatic steatosis in the LCR including higher liver triglycerides (6.00 ± 0.71 vs. 4.20 ± 0.39 nmol g −1 , P = 0.020 value), >2-fold higher percentage of hepatocytes associated with lipid droplets (54.0 ± 9.2 vs. 22.0 ± 3.5%, P = 0.006), and increased hepatic lipid peroxidation compared to the HCR. Additionally, in rats aged to natural death, LCR livers had significantly greater hepatic injury (fibrosis and apoptosis). We provide novel evidence that selection for low intrinsic aerobic capacity causes reduced hepatic mitochondrial oxidative capacity that increases susceptibility to both hepatic steatosis and liver injury.
OBJECTIVES Determine if simvastatin impairs exercise training adaptations. BACKGROUND Statins are commonly prescribed in combination with therapeutic lifestyle changes, including exercise, to reduce cardiovascular disease risk in patients with the metabolic syndrome. Statin use has been linked to skeletal muscle myopathy and impaired mitochondrial function, but it is unclear whether statin use alters adaptations to exercise training. METHODS We examined the effects of simvastatin on changes in cardiorespiratory fitness and skeletal muscle mitochondrial content in response to aerobic exercise training. Sedentary overweight or obese adults with at least 2 metabolic syndrome risk factors (defined according to National Cholesterol Education Panel Adult Treatment Panel III criteria) were randomized to 12 weeks of aerobic exercise training or to exercise in combination with simvastatin (40 mg per day). The primary outcomes were cardiorespiratory fitness and skeletal muscle (vastus lateralis) mitochondrial content (citrate synthase enzyme activity). RESULTS Thirty-seven participants (exercise plus statins; n=18; exercise only; n=19) completed the study. Cardiorespiratory fitness increased by 10% (P<0.05) in response to exercise training alone, but was blunted by the addition of simvastatin resulting in only a 1.5% increase (P<0.005 for group by time interaction). Similarly, skeletal muscle citrate synthase activity increased by 13% in the exercise only group (P <0.05), but decreased by 4.5% in the simvastatin plus exercise group (P<0.05 for group by time interaction). CONCLUSION Simvastatin attenuates increases in cardiorespiratory fitness and skeletal muscle mitochondrial content when combined with exercise training in overweight or obese patients at risk of the metabolic syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.