Abstract. Talin is a high molecular weight protein localized at adhesion plaques in fibroblasts. It binds vinculin and integrin and appears to participate in generating a transmembrane connection between the extracellular matrix and the cytoskeleton. We have recently shown that talin is an abundant protein in platelets, cells highly specialized for regulated adhesion. Although talin constitutes >3 % of the total protein in intact human platelets, its location within the cells had not been defined. In the work reported here, we have investigated the distribution of talin in resting and activated human platelets by immunofluorescence and immunoelectron microscopy. We have found that talin undergoes an activation-dependent change in its subcellular location. In resting platelets, which are nonadhesive, talin is uniformly distributed throughout the cytoplasm. In contrast, in thrombin-and glassactivated, substratum-adherent platelets, talin is concentrated at the cytoplasmic face of the plasma membrane. This dramatic, regulated redistribution of talin raises the possibility that talin plays a role in the controlled development of platelet adhesion.
BackgroundEpidemiologic studies of occupational lead exposure have suggested increased risks of cancers of the stomach, lung, kidney, brain, and meninges; however, the totality of the evidence is inconsistent.ObjectiveWe investigated the relationship between occupational lead exposure and cancer incidence at the five abovementioned sites in two prospective cohorts in Shanghai, China.MethodsAnnual job/industry-specific estimates of lead fume and lead dust exposure, derived from a statistical model combining expert lead intensity ratings with inspection measurements, were applied to the lifetime work histories of participants from the Shanghai Women’s Health Study (SWHS; n = 73,363) and the Shanghai Men’s Health Study (SMHS; n = 61,379) to estimate cumulative exposure to lead fume and lead dust. These metrics were then combined into an overall occupational lead exposure variable. Cohort-specific relative hazard rate ratios (RRs) and 95% confidence intervals (CIs) comparing exposed and unexposed participants were estimated using Cox proportional hazards regression and combined by meta-analysis.ResultsThe proportions of SWHS and SMHS participants with estimated occupational lead exposure were 8.9% and 6.9%, respectively. Lead exposure was positively associated with meningioma risk in women only (n = 38 unexposed and 9 exposed cases; RR = 2.4; 95% CI: 1.1, 5.0), particularly with above-median cumulative exposure (RR = 3.1; 95% CI: 1.3, 7.4). However, all 12 meningioma cases among men were classified as unexposed to lead. We also observed non-significant associations with lead exposure for cancers of the kidney (n = 157 unexposed and 17 ever exposed cases; RR = 1.4; 95% CI: 0.9, 2.3) and brain (n = 67 unexposed and 10 ever exposed cases; RR = 1.8; 95% CI: 0.7, 4.8) overall.ConclusionsOur findings, though limited by small numbers of cases, suggest that lead is associated with the risk of several cancers in women and men.CitationLiao LM, Friesen MC, Xiang YB, Cai H, Koh DH, Ji BT, Yang G, Li HL, Locke SJ, Rothman N, Zheng W, Gao YT, Shu XO, Purdue MP. 2016. Occupational lead exposure and associations with selected cancers: the Shanghai Men’s and Women’s Health Study cohorts. Environ Health Perspect 124:97–103; http://dx.doi.org/10.1289/ehp.1408171
Abstract. The effect of semen storage time, drone age and semen contamination on honey bee semen quality was investigated using assays for motility and viability of semen in vitro. Four age groups (1, 2, 4 and 6 weeks) and five storage times (0, 1, 2, 4 and 6 weeks) were examined. As storage time increased, sperm viability and motility significantly decreased. However, motility patterns of unstored semen samples were significantly lower than those samples that were stored up to 2 weeks. Sperm viability decreased significantly with increasing drone age, but motility patterns did not change. Those semen samples that were found to be contaminated with foreign particles or microorganisms had a significantly lower mean viability than uncontaminated samples.
The epidemiologic evidence for the carcinogenicity of lead is inconsistent and requires improved exposure assessment to estimate risk. We evaluated historical occupational lead exposure for a population-based cohort of women (n=74,942) by calibrating a job-exposure matrix (JEM) with lead fume (n=20,084) and lead dust (n=5,383) measurements collected over four decades in Shanghai, China. Using mixed-effect models, we calibrated intensity JEM ratings to the measurements using fixed-effects terms for year and JEM rating. We developed job/industry-specific estimates from the random-effects terms for job and industry. The model estimates were applied to subjects’ jobs when the JEM probability rating was high for either job or industry; remaining jobs were considered unexposed. The models predicted that exposure increased monotonically with JEM intensity rating and decreased 20–50-fold over time. The cumulative calibrated JEM estimates and job/industry-specific estimates were highly correlated (Pearson correlation=0.79–0.84). Overall, 5% of the person-years and 8% of the women were exposed to lead fume; 2% of the person-years and 4% of the women were exposed to lead dust. The most common lead-exposed jobs were manufacturing electronic equipment. These historical lead estimates should enhance our ability to detect associations between lead exposure and cancer risk in future epidemiologic analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.