Abscission is the last step of cytokinesis that physically separates the cytoplasm of sister cells. As the final stage of cell division, abscission is poorly characterized during animal development. Here, we show that Aurora B and Survivin regulate the number of germ cells in each Drosophila egg chamber by inhibiting abscission during differentiation. This inhibition is mediated by an Aurora B-dependent phosphorylation of Cyclin B, as a phosphomimic form of Cyclin B rescues premature abscission caused by a loss-of-function of Aurora B. We show that Cyclin B localizes at the cytokinesis bridge, where it promotes abscission. We propose that mutual inhibitions between Aurora-B and Cyclin-B regulate the duration of abscission and thereby the number of sister cells in each cyst. Finally, we show that inhibitions of Aurora B and Cdk-1 activity in vertebrate cells also have opposite effects on the timing of abscission, suggesting a possible conservation of these mechanisms.
During meiosis in the females of many species, spindle assembly occurs in the absence of the microtubule-organizing centers called centrosomes. In the absence of centrosomes, the nature of the chromosome-based signal that recruits microtubules to promote spindle assembly as well as how spindle bipolarity is established and the chromosomes orient correctly toward the poles is not known. To address these questions, we focused on the chromosomal passenger complex (CPC). We have found that the CPC localizes in a ring around the meiotic chromosomes that is aligned with the axis of the spindle at all stages. Using new methods that dramatically increase the effectiveness of RNA interference in the germline, we show that the CPC interacts with Drosophila oocyte chromosomes and is required for the assembly of spindle microtubules. Furthermore, chromosome biorientation and the localization of the central spindle kinesin-6 protein Subito, which is required for spindle bipolarity, depend on the CPC components Aurora B and Incenp. Based on these data we propose that the ring of CPC around the chromosomes regulates multiple aspects of meiotic cell division including spindle assembly, the establishment of bipolarity, the recruitment of important spindle organization factors, and the biorientation of homologous chromosomes.
Crossovers ensure the accurate segregation of homologous chromosomes from one another during meiosis. Here, we describe the identity and function of the Drosophila melanogaster gene recombination defective (rec), which is required for most meiotic crossing over. We show that rec encodes a member of the mini-chromosome maintenance (MCM) protein family. Six MCM proteins (MCM2–7) are essential for DNA replication and are found in all eukaryotes. REC is the Drosophila ortholog of the recently identified seventh member of this family, MCM8. Our phylogenetic analysis reveals the existence of yet another family member, MCM9, and shows that MCM8 and MCM9 arose early in eukaryotic evolution, though one or both have been lost in multiple eukaryotic lineages. Drosophila has lost MCM9 but retained MCM8, represented by REC. We used genetic and molecular methods to study the function of REC in meiotic recombination. Epistasis experiments suggest that REC acts after the Rad51 ortholog SPN-A but before the endonuclease MEI-9. Although crossovers are reduced by 95% in rec mutants, the frequency of noncrossover gene conversion is significantly increased. Interestingly, gene conversion tracts in rec mutants are about half the length of tracts in wild-type flies. To account for these phenotypes, we propose that REC facilitates repair synthesis during meiotic recombination. In the absence of REC, synthesis does not proceed far enough to allow formation of an intermediate that can give rise to crossovers, and recombination proceeds via synthesis-dependent strand annealing to generate only noncrossover products.
In oocytes, where centrosomes are absent, the chromosomes direct the assembly of a bipolar spindle. Interactions between chromosomes and microtubules are essential for both spindle formation and chromosome segregation, but the nature and function of these interactions is not clear. We have examined oocytes lacking two kinetochore proteins, NDC80 and SPC105R, and a centromere-associated motor protein, CENP-E, to characterize the impact of kinetochore-microtubule attachments on spindle assembly and chromosome segregation in Drosophila oocytes. We found that the initiation of spindle assembly results from chromosome-microtubule interactions that are kinetochore-independent. Stabilization of the spindle, however, depends on both central spindle and kinetochore components. This stabilization coincides with changes in kinetochore-microtubule attachments and bi-orientation of homologs. We propose that the bi-orientation process begins with the kinetochores moving laterally along central spindle microtubules towards their minus ends. This movement depends on SPC105R, can occur in the absence of NDC80, and is antagonized by plus-end directed forces from the CENP-E motor. End-on kinetochore-microtubule attachments that depend on NDC80 are required to stabilize bi-orientation of homologs. A surprising finding was that SPC105R but not NDC80 is required for co-orientation of sister centromeres at meiosis I. Together, these results demonstrate that, in oocytes, kinetochore-dependent and -independent chromosome-microtubule attachments work together to promote the accurate segregation of chromosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.