A printed compact coplanar waveguide fed triangular slot antenna for ultra wide band (UWB) communication systems is presented. The antenna comprises of a triangular slot loaded ground plane with a T shaped strip radiator to enhance the bandwidth and radiation. This compact antenna has a dimension of 26 mm × 26 mm when printed on a substrate of dielectric constant 4.4 and thickness 1.6 mm. Design equations are implemented and validated for different substrates. The pulse distortion is insignificant and is verified by the measured antenna performance with high signal fidelity and virtually steady group delay. The simulation and experiment reveal that the proposed antenna exhibits good impedance match, stable radiation patterns and constant gain and group delay over the entire operating band.
A compact ultra wide band (UWB) antenna with dual band notch characteristics is proposed. The antenna consists of a coplanar waveguide (CPW) fed bevelled rectangular patch and a modified rectangular ground plane. A Z-shaped meander line parasitic element and a pair of symmetrical L-shaped quarter-wavelength stubs are employed to realise band-notched functions at WiMAX and WLAN bands respectively. By optimizing the dimensions and positions of these notch structures, the desired notch-bands of WLAN and WiMAX are achieved. Unlike other dual band-notched antennas reported in literature this antenna has a merit of regulating the centre frequency as well as the bandwidth of both the notched bands easily and independently. The measured −10 dB S 11 covers the bandwidth from 2.5 to 11.5 GHz, with two notched bands from 3.3 to 3.6 GHz and 5.2 to 5.75 GHz. The proposed antenna exhibits nearly omni-directional radiation patterns with moderate gain and small group delay variations less than 0.5 ns over the entire operating bandwidth except at the notched bands. Moreover, by using antenna transfer function, the time domain characteristic of the antenna is also studied to confirm its suitability for UWB pulse communication.
A compact coplanar waveguide-fed (CPW) monopole antenna for ultra-wideband wireless communication is presented. The proposed antenna comprises of a CPW-fed beveled rectangular patch with a modified slotted ground. The overall size of the antenna is 30 mm  27 mm  1.6 mm. The lower edge of the band is attained by properly decoupling the resonant frequencies due to the extended ground plane and the beveled rectangular patch of the antenna. The upper edge of the radiating band is enhanced by beveling the ground plane corners near the feed point. Experimental results show that the designed antenna operates in the 2.7-12 GHz band, for S 11 À10 dB with a gain of 2.7-5 dBi. Both the frequency domain and time domain characteristics of the antenna are investigated using antenna transfer function. It is observed that the antenna exhibits identical radiation patterns and reasonable transient characteristics over the entire operating band. V C 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE 22:594-602, 2012.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.