The transient receptor potential vanilloid 1 (TRPV1) is primarily localized to sensory nerve fibers and is associated with the stimulation of pain and inflammation. TRPV1 knockout (TRPV1KO) mice show enhanced LPS-induced sepsis compared with wild type (WT). This implies that TRPV1 may have a key modulatory role in increasing the beneficial and reducing the harmful components in sepsis. We investigated immune and inflammatory mechanisms in a cecal ligation and puncture (CLP) model of sepsis over 24 h. CLP TRPV1KO mice exhibited significant hypothermia, hypotension, and organ dysfunction compared with CLP WT mice. Analysis of the inflammatory responses at the site of initial infection (peritoneal cavity) revealed that CLP TRPV1KO mice exhibited: 1) decreased mononuclear cell integrity associated with apoptosis, 2) decreased macrophage tachykinin NK1-dependent phagocytosis, 3) substantially decreased levels of nitrite (indicative of NO) and reactive oxygen species, 4) increased cytokine levels, and 5) decreased bacteria clearance when compared with CLP WT mice. Therefore, TRPV1 deletion is associated with impaired macrophage-associated defense mechanisms. Thus, TRPV1 acts to protect against the damaging impact of sepsis and may influence the transition from local to a systemic inflammatory state.
Splice products of the Kiss1 protein (kisspeptins) have been shown to be involved in a diverse range of functions, including puberty, metastasis and vasoconstriction in large human arteries. Circulating Kisspeptin-10 (Kp-10) plasma levels are low in normal individuals but are elevated during various disease states as well as pregnancy. Here, we investigated the potential of Kp-10, the shortest biologically active kisspeptin, to influence microvascular effects, concentrating on the cutaneous vasculature. Kp-10 caused a dose-dependent increase in oedema formation (0.3–10nmol/injection site), assessed by Evans Blue albumin dye extravasation, in the dorsal skin of CD1 mice. Oedema formation was shown to be inhibited by the histamine H1 receptor antagonist mepyramine. The response was characterised by a ring of pallor at the injection site in keeping with vasoconstrictor activity. Therefore, changes in dorsal skin blood flow were assessed by clearance of intradermally injected 99mtechnetium. Kp-10 was found to significantly reduce clearance, in keeping with decreased blood flow and providing further evidence for vasoconstrictor activity. The decreased clearance was partially inhibited by co-treatment with the cyclo-oxygenase inhibitor indomethacin. Finally evidence for the kisspeptin receptor gene (Kiss1R), but not the kisspeptin peptide gene (Kiss1), mRNA expression was observed in heart, aorta and kidney samples from normal and angiotensin II induced hypertensive mice, with similar mRNA levels observed in each. We have evidence for two peripheral vasoactive roles for kisspeptin-10. Firstly, plasma extravasation indicative of ability to induce oedema formation and secondly decreased peripheral blood flow, indicating microvascular constriction. Thus Kp-10 has vasoactive properties in the peripheral microvasculature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.