The degree and variation of IC contamination in complex epithelial tissues is substantial. We provide a valuable resource and tool for assessing the epithelial purity and IC contamination of samples and for identifying differential methylation in such complex tissues.
Saliva represents an ideal matrix for diagnostic biomarker development as it is readily available and requires no invasive collection procedures. However, salivary RNA is labile and rapidly degrades. Previous attempts to isolate RNA from saliva have yielded poor quality and low concentrations. Here we compare collection and processing methods and propose an approach for future studies. The effects of RNA stabilisers, storage temperatures, length of storage and fasting windows were investigated on pooled saliva samples from healthy volunteers. Isolated RNA was assessed for concentration and quality. Bacterial growth was investigated through RT-PCR using bacterial and human primers. Optimal conditions were implemented and quality controlled in a clinical setting. The addition of RNAlater increased mean RNA yield from 4912 ng/μl to 15,473 ng and RNA Integrity Number (RIN) from 4.5 to 7.0. No significant changes to RNA yield were observed for storage at room temperature beyond 1 day or at -80˚C. Bacterial growth did not occur in samples stored at ambient temperature for up to a week. There was a trend towards higher RNA concentration when saliva was collected after overnight fasting but no effect on RIN. In the clinic, RNA yields of 6307 ng and RINs of 3.9 were achieved, improving on previous reports. The method we describe here is a robust, clinically feasible saliva collection method using preservative that gives high concentrations and improved RINs compared to saliva collected without preservative.
Background Screening for Barrett's oesophagus relies on endoscopy, which is invasive and few who undergo the procedure are found to have the condition. We aimed to use machine learning techniques to develop and externally validate a simple risk prediction panel to screen individuals for Barrett's oesophagus.
MethodsIn this prospective study, machine learning risk prediction in Barrett's oesophagus (MARK-BE), we used data from two case-control studies, BEST2 and BOOST, to compile training and validation datasets. From the BEST2 study, we analysed questionnaires from 1299 patients, of whom 880 (67·7%) had Barrett's oesophagus, including 40 with invasive oesophageal adenocarcinoma, and 419 (32·3%) were controls. We randomly split (6:4) the cohort using a computer algorithm into a training dataset of 776 patients and a testing dataset of 523 patients. We compiled an external validation cohort from the BOOST study, which included 398 patients, comprising 198 patients with Barrett's oesophagus (23 with oesophageal adenocarcinoma) and 200 controls. We identified independently important diagnostic features of Barrett's oesophagus using the machine learning techniques information gain and correlationbased feature selection. We assessed multiple classification tools to create a multivariable risk prediction model. Internal validation of the model using the BEST2 testing dataset was followed by external validation using the BOOST external validation dataset. From these data we created a prediction panel to identify at-risk individuals.Findings The BEST2 study included 40 diagnostic features. Of these, 19 added information gain but after correlationbased feature selection only eight showed independent diagnostic value including age, sex, cigarette smoking, waist circumference, frequency of stomach pain, duration of heartburn and acidic taste, and taking antireflux medication, of which all were associated with increased risk of Barrett's oesophagus, except frequency of stomach pain, with was inversely associated in a case-control population. Logistic regression offered the highest prediction quality with an area under the receiver-operator curve (AUC) of 0·87 (95% CI 0·84-0·90; sensitivity set at 90%; specificity of 68%). In the testing dataset, AUC was 0·86 (0·83-0·89; sensitivity set at 90%; specificity of 65%). In the external validation dataset, the AUC was 0·81 (0·74-0·84; sensitivity set at 90%; specificity of 58%).
Interpretation Our diagnostic model offers valid predictions of diagnosis of Barrett's oesophagus in patients withsymptomatic gastro-oesophageal reflux disease, assisting in identifying who should go forward to invasive confirmatory testing. Our predictive panel suggests that overweight men who have been taking antireflux medication for a long time might merit particular consideration for further testing. Our risk prediction panel is quick and simple to administer but will need further calibration and validation in a prospective study in primary care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.