The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.Electronic supplementary materialThe online version of this article (doi:10.1007/s11682-016-9629-z) contains supplementary material, which is available to authorized users.
Novelty-seeking tendencies in adolescents may promote innovation as well as problematic impulsive behaviour, including drug abuse. Previous research has not clarified whether neural hyper- or hypo-responsiveness to anticipated rewards promotes vulnerability in these individuals. Here we use a longitudinal design to track 144 novelty-seeking adolescents at age 14 and 16 to determine whether neural activity in response to anticipated rewards predicts problematic drug use. We find that diminished BOLD activity in mesolimbic (ventral striatal and midbrain) and prefrontal cortical (dorsolateral prefrontal cortex) regions during reward anticipation at age 14 predicts problematic drug use at age 16. Lower psychometric conscientiousness and steeper discounting of future rewards at age 14 also predicts problematic drug use at age 16, but the neural responses independently predict more variance than psychometric measures. Together, these findings suggest that diminished neural responses to anticipated rewards in novelty-seeking adolescents may increase vulnerability to future problematic drug use.
BACKGROUND: Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. METHODS: Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n 5 1830) of 14-to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). RESULTS: Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. CONCLUSIONS: Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior.
Longitudinal developmental fMRI studies just recently began to focus on within-subject reliability using the intraclass coefficient (ICC). It remains largely unclear which degree of reliability can be achieved in developmental studies and whether this depends on the type of task used. Therefore, we aimed to systematically investigate the reliability of three well-classified tasks: an emotional attention, a cognitive control, and an intertemporal choice paradigm. We hypothesized to find higher reliability in the cognitive task than in the emotional or reward-related task. 104 healthy mid-adolescents were scanned at age 14 and again at age 16 within M = 1.8 years using the same paradigms, scanner, and scanning protocols. Overall, we found both variability and stability (i.e. poor to excellent ICCs) depending largely on the region of interest (ROI) and task. Contrary to our hypothesis, whole brain reliability was fair for the cognitive control task but good for the emotional attention and intertemporal choice task. Subcortical ROIs (ventral striatum, amygdala) resulted in lower ICCs than visual ROIs. Current results add to the yet sparse overall ICC literature in both developing samples and adults. This study shows that analyses of stability, i.e. reliability, are helpful benchmarks for longitudinal studies and their implications for adolescent development.
(2016) Polygenic risk of psychosis and ventral striatal activation during reward processing in healthy adolescents. JAMA Psychiatry, 73 (8). pp. 852-861. ISSN 2168-6238 Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/39607/1/yoi160037.pdf Copyright and reuse:The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see: http://eprints.nottingham.ac.uk/end_user_agreement.pdf A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.For more information, please contact eprints@nottingham.ac.ukCopyright 2016 American Medical Association. All rights reserved. Polygenic Risk of Psychosis and Ventral Striatal Activation During Reward Processing in Healthy AdolescentsThomas M. Lancaster, PhD; David E. Linden, MD, PhD; Katherine E. Tansey, PhD; Tobias Banaschewski, MD, PhD; Arun L. W. Bokde, PhD; Uli Bromberg, Dipl-Psych; Christian Büchel, MD; Anna Cattrell, PhD; Patricia J. Conrod, PhD; Herta Flor, PhD; Vincent Frouin, PhD; Jürgen Gallinat, MD; Hugh Garavan, PhD; Penny Gowland, PhD; Andreas Heinz, MD, PhD; Bernd Ittermann, PhD; Jean-Luc Martinot, MD, PhD; Marie-Laure Paillère Martinot, MD, PhD; Eric Artiges, MD, PhD; Herve Lemaitre, PhD; Frauke Nees, PhD; Dimitri Papadopoulos Orfanos, PhD; Tomáš Paus, MD, PhD; Luise Poustka, MD; Michael N. Smolka, MD; Nora C. Vetter, PhD; Sarah Jurk, Dipl-Psych; Eva Mennigen, MD; Henrik Walter, MD, PhD; Robert Whelan, PhD; Gunter Schumann, MD; for the IMAGEN Consortium IMPORTANCE Psychotic disorders are characterized by attenuated activity in the brain's valuation system in key reward processing areas, such as the ventral striatum (VS), as measured with functional magnetic resonance imaging.OBJECTIVE To examine whether common risk variants for psychosis are associated with individual variation in the VS. DESIGN, SETTING, AND PARTICIPANTSA cross-sectional study of a large cohort of adolescents from the IMAGEN study (a European multicenter study of reinforcement sensitivity in adolescents) was performed from March 1, 2008, through December 31, 2011. Data analysis was conducted from October 1, 2015, to January 9, 2016. Polygenic risk profile scores (RPSs) for psychosis were generated for 1841 healthy adolescents. Sample size and characteristics varied across regression analyses, depending on mutual information available (N = 1524-1836). MAIN OUTCOMES AND MEASURESReward-related brain function was assessed with blood oxygen level dependency (BOLD) in the VS using the monetary incentive delay (MID) task, distinguishing reward anticipatio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.