A high power continuous wave quantum cascade laser operating around 1900 cm(-1) has been used to conduct Lamb dip spectroscopy on a low pressure sample of NO. The widths of the Lamb dips indicate that the laser linewidth is 800 ± 60 kHz and the power sufficient to induce significant population transfer of up to 35%. While the Lamb dip signals are symmetric at low laser chirp rates, they become increasingly asymmetric as the chirp rate increases, further confirming the significant degree of population transfer. In addition rapid passage structure on the Lamb dip signal is observed after the weak probe beam is swept through the line center. This structure is sensitive to both the probe chirp rate and the underlying hyperfine structure of the rovibrational transition, and is accurately modeled using the optical Bloch equations.
This paper details infra-red pump and probe studies on nitric oxide conducted with two continuous wave quantum cascade lasers both operating around 5 μm. The pump laser prepares a velocity selected population in a chosen rotational quantum state of the v = 1 level which is subsequently probed using a second laser tuned to a rotational transition within the v = 2 ← v = 1 hot band. The rapid frequency scan of the probe (with respect to the molecular collision rate) in combination with the velocity selective pumping allows observation of marked rapid passage signatures in the transient absorption profiles from the polarized vibrationally excited sample. These coherent transient signals are influenced by the underlying hyperfine structure of the pump and probe transitions, the sample pressure, and the coherent properties of the lasers. Pulsed pump and probe studies show that the transient absorption signals decay within 1 μs at 50 mTorr total pressure, reflecting both the polarization and population dephasing times of the vibrationally excited sample. The experimental observations are supported by simulation based upon solving the optical Bloch equations for a two level system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.