In sub-Saharan Africa, there is a high demand for affordable and accessible methods for on-site detection of aflatoxins for appropriate food safety management. In this study, we validated an electrochemical immunosensor device by the on-site detection of 60 maize flour samples from six markets and 72 samples from households in Kampala. The immunosensor was successfully validated with a linear range from 0.7 ± 0.1 to 11 ± 0.3 µg/kg and limit of detection (LOD) of 0.7 µg/kg. The maize flour samples from the markets had a mean total aflatoxin concentration of 7.6 ± 2.3 µg/kg with approximately 20% of the samples higher than 10 µg/kg, which is the maximum acceptable level in East Africa. Further down the distribution chain, at the household level, approximately 45% of the total number contained total aflatoxin levels higher than the acceptable limit. The on-site detection method correlated well with the established laboratory-based HPLC and ELISA-detection methods for aflatoxin B1 with the correlation coefficients of 0.94 and 0.98, respectively. This study shows the feasibility of a novel on-site detection method and articulates the severity of aflatoxin contamination in Uganda.
Thelechitonia trilobata is regarded as a troublesome weed that grows to form a dense blanket over the soil preventing the growth of other crops in farmland. Although the plant is regarded as a notorious, invasive plant, its chemical composition and biological potential have not been reported. The essential oil was isolated from the fresh leaves of T. trilobata using hydrodistillation. α-Pinene (21.6%), α-phellendrene (21.0%), limonene (12.8%) and germacrene D (7.5%) were the major constituents of the oil. The essential oil was screened against agricultural pests. The anti-tick properties were tested on Ripicephalus e. ervertsi found on sheep, while repellency, fumigation, and contact toxicity tests were carried out with maize weevils. Except for the contact toxicity test, all other bioassays gave positive results.
The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD) experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.