The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution of other human enteropathogens.
Previously, we identified five genes (Cj1321 to Cj1326, of which Cj1325 and Cj1326 are a single gene) in the O-linked flagellin glycosylation island that are highly prevalent in Campylobacter jejuni isolates from chickens. We report mutagenesis, functional, and structural data to confirm that this locus, and Cj1324 in particular, has a significant contributory role in the colonization of chickens by C. jejuni. A motile ⌬Cj1324 mutant with intact flagella was considerably less hydrophobic and less able to autoagglutinate and form biofilms than the parent strain, 11168H, suggesting that the surface charge of flagella of Cj1324-deficient strains was altered. The physical and functional attributes of the parent were restored upon complementation. Structural analysis of flagellin protein purified from the ⌬Cj1324 mutant revealed the absence of two legionaminic acid glycan modifications that were present in the parent strain, 11168H. These glycoform modifications were shown to be prevalent in chicken isolates and confirm that differences in the highly variable flagellin glycosylation locus can relate to the strain source. The discovery of molecular mechanisms influencing the persistence of C. jejuni in poultry aids the rational design of approaches to control this problematic pathogen in the food chain.
Galleria mellonella (wax moth) larvae have elsewhere been shown to be susceptible to pathogens such as Francisella tularensis, Burkholderia mallei, and Pseudomonas aeruginosa. We report that the larvae are rapidly killed by Campylobacter jejuni at 37C. Three strains of C. jejuni tested, 11168H (human diarrheal isolate), G1 (human Guillain-Barré syndrome isolate), and 81-176 (human diarrheal isolate), were equally effective at killing G. mellonella larvae. A panel of defined mutants of C. jejuni 11168H, in known or putative virulence genes, showed different degrees of attenuation in G. mellonella larvae. A mutant lacking the O-methyl phosphoramidate (MeOPN) capsule side group was attenuated, clearly demonstrating that MeOPN has a role in virulence. This new model of C. jejuni infection should facilitate the identification of novel virulence genes.
Yersinia enterocolitica, an important cause of human gastroenteritis generally caused by the consumption of livestock, has traditionally been categorized into three groups with respect to pathogenicity, i.e., nonpathogenic (biotype 1A), low pathogenicity (biotypes 2 to 5), and highly pathogenic (biotype 1B). However, genetic differences that explain variation in pathogenesis and whether different biotypes are associated with specific nonhuman hosts are largely unknown. In this study, we applied comparative phylogenomics (whole-genome comparisons of microbes with DNA microarrays combined with Bayesian phylogenies) to investigate a diverse collection of 94 strains of Y. enterocolitica consisting of 35 human, 35 pig, 15 sheep, and 9 cattle isolates from nonpathogenic, low-pathogenicity, and highly pathogenic biotypes. Analysis confirmed three distinct statistically supported clusters composed of a nonpathogenic clade, a low-pathogenicity clade, and a highly pathogenic clade. Genetic differences revealed 125 predicted coding sequences (CDSs) present in all highly pathogenic strains but absent from the other clades. These included several previously uncharacterized CDSs that may encode novel virulence determinants including a hemolysin, a metalloprotease, and a type III secretion effector protein. Additionally, 27 CDSs were identified which were present in all 47 low-pathogenicity strains and Y. enterocolitica 8081 but absent from all nonpathogenic 1A isolates. Analysis of the core gene set for Y. enterocolitica revealed that 20.8% of the genes were shared by all of the strains, confirming this species as highly heterogeneous, adding to the case for the existence of three subspecies of Y. enterocolitica. Further analysis revealed that Y. enterocolitica does not cluster according to source (host).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.