Highlights d Activation of POA Tac1 neurons promoted and stabilized wake over NREM and REM sleep d Wakefulness caused by POA Tac1 activation is not due to increased anxiety d POA Tac1 activation enhanced emergence from isoflurane and sevoflurane anesthesia d The same neurons modulating endogenous arousal may sculpt states of anesthesia
Mechanisms through which anesthetics disrupt neuronal activity are incompletely understood. In order to study anesthetic mechanisms in the intact brain, tight control over anesthetic pharmacology in a genetically and neurophysiologically accessible animal model is essential. Here, we developed a pharmacokinetic model that quantitatively describes propofol distribution into and elimination out of the brain. To develop the model, we used jugular venous catheters to infuse propofol in mice and measured propofol concentration in serial timed brain and blood samples using high performance liquid chromatography (HPLC). We then used adaptive fitting procedures to find parameters of a three compartment pharmacokinetic model such that all measurements collected in the blood and in the brain across different infusion schemes are fit by a single model. The purpose of the model was to develop target controlled infusion (TCI) capable of maintaining constant brain propofol concentration at the desired level. We validated the model for two different targeted concentrations in independent cohorts of experiments not used for model fitting. The predictions made by the model were unbiased, and the measured brain concentration was indistinguishable from the targeted concentration. We also verified that at the targeted concentration, state of anesthesia evidenced by slowing of the electroencephalogram and behavioral unresponsiveness was attained. Thus, we developed a useful tool for performing experiments necessitating use of anesthetics and for the investigation of mechanisms of action of propofol in mice.
The role of the hypothalamic preoptic area (POA) in arousal state regulation has been studied since Constantin von Economo first recognized its importance in the early twentieth century. Over the intervening decades, the POA has been shown to modulate arousal in both natural (sleep and wake) as well as drug-induced (anesthetic-induced unconsciousness) states. While the POA is well known for its role in sleep promotion, populations of wake-promoting neurons within the region have also been identified. However, the complexity and molecular heterogeneity of the POA has made distinguishing these two populations difficult. Though multiple lines of evidence demonstrate that general anesthetics modulate the activity of the POA, the region’s heterogeneity has also made it challenging to determine whether the same neurons involved in sleep/wake regulation also modulate arousal in response to general anesthetics. While a number of studies show that sleep-promoting POA neurons are activated by various anesthetics, recent work suggests this is not universal to all arousal-regulating POA neurons. Technical innovations are making it increasingly possible to classify and distinguish the molecular identities of neurons involved in sleep/wake regulation as well as anesthetic-induced unconsciousness. Here, we review the current understanding of the POA’s role in arousal state regulation of both natural and drug-induced forms of unconsciousness, including its molecular organization and connectivity to other known sleep and wake promoting regions. Further insights into the molecular identities and connectivity of arousal-regulating POA neurons will be critical in fully understanding how this complex region regulates arousal states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.