The influence of interfacial structure and lipid physical state on colloidal stability and digestibility of solid lipid nanoparticle dispersions (SLN) and canola oil-in-water emulsions (COE) stabilized with the non-ionic surfactants Poloxamer 188 (P188) and Tween 20 (T20) were examined and the release of encapsulated β-carotene (BC) under simulated gastrointestinal conditions determined. While the SLN and COE were all stable during exposure to gastric conditions (mean diameter ∼115 nm), more destabilization was observed for the COE than SLN during the duodenal phase. ζ-Potential measurements indicated rapid adsorption of bile salts (BS) and phospholipids (PL) to both solid and liquid interfaces, with greater surfactant displacement observed for the COE. Compared to the SLN, significantly more lipolysis and BC transfer to the aqueous phase was observed for both the COE-P188 and COE-T20 (p < 0.05). The properties of the colloidal structures present in the aqueous phase, which are important in terms of the uptake of lipolytic products and lipophilic bioactives, depended on non-ionic surfactant type, the extent of lipid digestion, as well as the presence of BS and PL.
The stability, crystallization, and melting behavior of canola stearin (CaSt) solid lipid nanoparticle dispersions (SLN) and canola oil-in-water emulsions (COE) with 10 wt % Poloxamer 188 (P188) or Tween 20 (T20) with and without 0.1 wt % β-carotene (BC) were investigated. Particles or droplets with diameters in the range of 115 nm were formed and stable for up to 90 days at 4 or 20 °C. Polymorphism was affected by surfactant type; that is, only β versus both β' and β were observed for the P188 and T20 SLN, respectively. According to Cryo-TEM, the emulsions and SLN were spherical versus platelet-like structures, respectively, with differences observed between SLN with P188 or T20. More surfactant was interfacially adsorbed in the SLN versus COE. Incorporation of BC at 0.1 wt % had no impact on SLN or COE size, polymorphism, or melting behavior. Less BC degradation was observed for the SLN versus COE and during storage at 4 versus 20 °C (p < 0.05).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.