A biofilm of Geobacter sulfurreducens will grow on an anode surface and catalyze the generation of an electrical current by oxidizing acetate and utilizing the anode as its metabolic terminal electron acceptor. Here we report qualitative analysis of cyclic voltammetry of anodes modified with biofilms of G. sulfurreducens strains DL1 and KN400 to predict possible rate-limiting steps in current generation. Strain KN400 generates approximately 2 to 8-fold greater current than strain DL1 depending upon the electrode material, enabling comparative electrochemical analysis to study the mechanism of current generation. This analysis is based on our recently reported electrochemical model for biofilm-catalyzed current generation expanded here to a five step model; Step 1 is mass transport of acetate, carbon dioxide and protons into and out of the biofilm, Step 2 is microbial turnover of acetate to carbon dioxide and protons, Step 3 is the non-concerted, 1-electron reduction of 8 equivalents of electron transfer (ET) mediator, Step 4 is extracellular electron transfer (EET) through the biofilm to the electrode surface, and Step 5 is the reversible oxidation of reduced mediator by the electrode. Five idealized voltammetric current vs. potential dependencies (voltammograms) are derived, one for when each step in the model is assumed to limit catalytic current. Comparison to experimental voltammetry of DL1 and KN400 biofilm-modified anodes suggests that for both strains, the microbial oxidation of acetate (Step 2) is fast compared to microbial reduction of ET mediator (Step 3), and either Step 3 or EET through the biofilm (Step 4) limits catalytic current generation. The possible limitation of catalytic current by Step 4 is consistent with proton concentration gradients observed within these biofilms and finite thicknesses achieved by these biofilms. The model presented here has been universally designed for application to biofilms other than G. sulfurreducens and could serve as a platform for future quantitative voltammetric analysis of non-corrosive anode and cathode reactions catalyzed by microorganisms.
The possibility that graphite electrodes can serve as the direct electron donor for microbially catalyzed reductive dechlorination was investigated with Geobacter lovleyi. In an initial evaluation of whether G. lovleyi could interact electronically with graphite electrodes, cells were provided with acetate as the electron donor and an electrode as the sole electron acceptor. Current was produced at levels that were ca. 10-fold lower than those previously reported for Geobacter sulfurreducens under similar conditions, and G. lovleyi anode biofilms were correspondingly thinner. When an electrode poised at ؊300 mV (versus a standard hydrogen electrode) was provided as the electron donor, G. lovleyi effectively reduced fumarate to succinate. The stoichiometry of electrons consumed to succinate produced was 2:1, the ratio expected if the electrode served as the sole electron donor for fumarate reduction. G. lovleyi effectively reduced tetrachloroethene (PCE) to cis-dichloroethene with a poised electrode as the sole electron donor at rates comparable to those obtained when acetate serves as the electron donor. Cells were less abundant on the electrodes when the electrodes served as an electron donor than when they served as an electron acceptor. PCE was not reduced in controls without cells or when the current supply to cells was interrupted. These results demonstrate that G. lovleyi can use a poised electrode as a direct electron donor for reductive dechlorination of PCE. The ability to colocalize dechlorinating microorganisms with electrodes has several potential advantages for bioremediation of subsurface chlorinated contaminants, especially in source zones where electron donor delivery is challenging and often limits dechlorination.
Electrodes poised at potentials low enough to serve as an electron donor for microbial respiration, but high enough to avoid the production of hydrogen, have been proposed as an alternative to the use of soluble electron donors for stimulating the bioremediation of chlorinated contaminants and/or metals. However, this form of respiration using pure cultures of microorganisms has only been reported in Geobacter species. To further evaluate this bioremediation strategy studies were conducted with Anaeromyxobacter dehalogenans, which has previously been reported to reductively dechlorinate 2-chlorophenol to phenol with acetate as the electron donor. Anaeromyxobacter dehalogenans could oxidize acetate with electron transfer to a graphite electrode poised at a positive potential, demonstrating its ability to directly exchange electrons with electrodes. Anaeromyxobacter dehalogenans attached to electrodes poised at -300 mV versus standard hydrogen electrode reductively dechlorinated 2-chlorophenol to phenol. There was no dechlorination in the absence of A. dehalogenans and electrode-driven dechlorination stopped when the supply of electrons to the electrode was disrupted. The findings that microorganisms other than Geobacter species can accept electrons from electrodes for anaerobic respiration and that chlorinated aromatic compounds can be dechlorinated in this manner suggest that there may be substantial potential for treating a diversity of contaminants with microbe-electrode interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.