We report that the growth cones of Xenopus retinal ganglion cells express fibroblast growth factor receptors (FGFRs) and that bFGF stimulates neurite extension from cultured retinal neurons. Furthermore, bFGF is abundant in the developing optic tract but is reduced in the optic tectum. To test whether FGF signaling plays a role in axonal guidance in vivo, bFGF was exogenously applied to the developing optic pathway in "exposed brain" preparations. FGF-treated retinal axons navigate normally through the optic tract, but the majority veer aberrantly at the tectal border and bypass the target. Our results implicate FGF signaling in target recognition and suggest that diminished levels of bFGF in the tectum cause arriving axons to slow their growth.
Native fibroblast growth factor receptor (FGFR) function was inhibited in developing Xenopus retinal ganglion cells (RGCs) by in vivo transfection of a dominant negative FGFR. Axons expressing the dominant negative protein advanced at 60% of the normal speed, but nevertheless navigated appropriately in the embryonic optic pathway. When they neared the optic tectum, however, many axons made erroneous turns, causing them to bypass rather than enter their target. By contrast, RGC axons expressing nonfunctional FGFR mutants entered the tectum correctly. These findings demonstrate a role for FGFR signaling in the extension and targeting of RGC axons and suggest that receptor tyrosine kinase/growth factor interactions play a critical function in establishing initial connectivity in the vertebrate visual system.
Netrin-1 acts as a chemoattractant molecule to guide commissural neurons (CN) toward the floor plate by interacting with the receptor deleted in colorectal cancer (DCC). The molecular mechanisms underlying Netrin-1–DCC signaling are still poorly characterized. Here, we show that DCC is phosphorylated in vivo on tyrosine residues in response to Netrin-1 stimulation of CN and that the Src family kinase inhibitors PP2 and SU6656 block both Netrin-1–dependent phosphorylation of DCC and axon outgrowth. PP2 also blocks the reorientation of Xenopus laevis retinal ganglion cells that occurs in response to Netrin-1, which suggests an essential role of the Src kinases in Netrin-1–dependent orientation. Fyn, but not Src, is able to phosphorylate the intracellular domain of DCC in vitro, and we demonstrate that Y1418 is crucial for DCC axon outgrowth function. Both DCC phosphorylation and Netrin-1–induced axon outgrowth are impaired in Fyn−/− CN and spinal cord explants. We propose that DCC is regulated by tyrosine phosphorylation and that Fyn is essential for the response of axons to Netrin-1.
Background: Organs are programmed to acquire a particular size during development, but the regulatory mechanisms that dictate when dividing progenitor cells should permanently exit the cell cycle and stop producing additional daughter cells are poorly understood. In differentiated tissues, tumor suppressor genes maintain a constant cell number and intact tissue architecture by controlling proliferation, apoptosis and cell dispersal. Here we report a similar role for two tumor suppressor genes, the Zac1 zinc finger transcription factor and that encoding the cytokine TGFβII, in the developing retina.
Axons are guided to their targets by molecular cues expressed in their environment. How is the presence of these cues regulated? Although some evidence indicates that morphogens establish guidance cue expression as part of their role in patterning tissues, an important question is whether morphogens are then required to maintain guidance signals. We found that fibroblast growth factor (FGF) signaling sustains the expression of two guidance cues, semaphorin3A (xsema3A) and slit1 (xslit1), throughout the period of Xenopus optic tract development. With FGF receptor inhibition, xsema3A and xslit1 levels were rapidly diminished, and retinal ganglion cell axons arrested in the mid-diencephalon, before reaching their target. Importantly, direct downregulation of XSema3A and XSlit1 mostly phenocopied this axon guidance defect. Thus, FGFs promote continued presence of specific guidance cues critical for normal optic tract development, suggesting a second later role for morphogens, independent of tissue patterning, in maintaining select cues by acting to regulate their transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.