In infants intolerant of enteral feeding because of intestinal disease, parenteral nutrition may be associated with cholestasis, which can progress to end-stage liver disease. Here we show the function of hepatic macrophages and phytosterols in parenteral nutrition-associated cholestasis (PNAC) pathogenesis using a mouse model that recapitulates the human pathophysiology and combines intestinal injury with parenteral nutrition. We combine genetic, molecular, and pharmacological approaches to identify an essential function of hepatic macrophages and IL-1β in PNAC. Pharmacological antagonism of IL-1 signaling or genetic deficiency in CCR2, caspase-1 and caspase-11, or IL-1 receptor (which binds both IL-1α and IL-1β) prevents PNAC in mice. IL-1β increases hepatocyte NF-κB signaling, which interferes with farnesoid X receptor and liver X receptor bonding to respective promoters of canalicular bile and sterol transporter genes (Abcc2, Abcb11, and Abcg5/8), resulting in transcriptional suppression and subsequent cholestasis. Thus, hepatic macrophages, IL-1β, or NF-κB may be targets for restoring bile and sterol transport to treat PNAC.
BRCA1 is a tumour suppressor gene implicated in the predisposition to early onset breast and ovarian cancer. We have generated cell lines with inducible expression of BRCA1 to evaluate its role in mediating the cellular response to various chemotherapeutic drugs commonly used in the treatment of breast and ovarian cancer. Induction of BRCA1 in the presence of Taxol and Vincristine resulted in a dramatic increase in cell death; an e ect that was preceded by an acute arrest at the G2/ M phase of the cell cycle and which correlated with BRCA1 mediated induction of GADD45. A proportion of the arrested cells were blocked in mitosis suggesting activation of both a G2 and a mitotic spindle checkpoint. In contrast, no speci®c interaction was observed between BRCA1 induction and treatment of cells with a range of DNA damaging agents including Cisplatin and Adriamycin. Inducible expression of GADD45 in the presence of Taxol induced both G2 and mitotic arrest in these cells consistent with a role for GADD45 in contributing to these e ects. Our results support a role for both BRCA1 and GADD45 in selectively regulating a G2/M checkpoint in response to antimicrotubule agents and raise the possibility that their expression levels in cells may contribute to the toxicity observed with these compounds. Oncogene (2001) 20, 6123 ± 6131.
Ciliogenesis and cystogenesis require the exocyst, a conserved eight-protein trafficking complex that traffics ciliary proteins. In culture, the small GTPase Cdc42 co-localizes with the exocyst at primary cilia and interacts with the exocyst component Sec10. The role of Cdc42 in vivo, however, is not well understood. Here, knockdown of cdc42 in zebrafish produced a phenotype similar to sec10 knockdown, including tail curvature, glomerular expansion, and mitogen-activated protein kinase (MAPK) activation, suggesting that cdc42 and sec10 cooperate in ciliogenesis. In addition, cdc42 knockdown led to hydrocephalus and loss of photoreceptor cilia. Furthermore, there was a synergistic genetic interaction between zebrafish cdc42 and sec10, suggesting that cdc42 and sec10 function in the same pathway. Mice lacking Cdc42 specifically in kidney tubular epithelial cells died of renal failure within weeks of birth. Histology revealed cystogenesis in distal tubules and collecting ducts, decreased ciliogenesis in cyst cells, increased tubular cell proliferation, increased apoptosis, increased fibrosis, and led to MAPK activation, all of which are features of polycystic kidney disease, especially nephronophthisis. Taken together, these results suggest that Cdc42 localizes the exocyst to primary cilia, whereupon the exocyst targets and docks vesicles carrying ciliary proteins. Abnormalities in this pathway result in deranged ciliogenesis and polycystic kidney disease.
a b s t r a c tObjective. There is a need to develop and validate biomarkers for treatment response and survival in tuboovarian high-grade serous carcinoma (HGSC). The chemotherapy response score (CRS) stratifies patients into Gynecologic Oncology 154 (2019) 441-448 complete/near-complete (CRS3), partial (CRS2), and no/minimal (CRS1) response after neoadjuvant chemotherapy (NACT). Our aim was to review current evidence to determine whether the CRS is prognostic in women with tubo-ovarian HGSC treated with NACT.Methods. We established an international collaboration to conduct a systematic review and meta-analysis, pooling individual patient data from 16 sites in 11 countries. Patients had stage IIIC/IV HGSC, 3-4 NACT cycles and N6-months follow-up. Random effects models were used to derive combined odds ratios in the pooled population to investigate associations between CRS and progression free and overall survival (PFS and OS).Results. 877 patients were included from published and unpublished studies. Median PFS and OS were 15 months (IQR 5-65) and 28 months (IQR 7-92) respectively. CRS3 was seen in 249 patients (28%). The pooled hazard ratios (HR) for PFS and OS for CRS3 versus CRS1/CRS2 were 0·55 (95% CI, 0·45-0·66; P b 0·001) and 0·65 (95% CI 0·50-0·85, P = 0·002) respectively; no heterogeneity was identified (PFS: Q = 6·42, P = 0·698, I2 = 0·0%; OS: Q = 6·89, P = 0·648, I2 = 0·0%). CRS was significantly associated with PFS and OS in multivariate models adjusting for age and stage. Of 306 patients with known germline BRCA1/2 status, those with BRCA1/2 mutations (n = 80) were more likely to achieve CRS3 (P = 0·027).Conclusions. CRS3 was significantly associated with improved PFS and OS compared to CRS1/2. This validation of CRS in a real-world setting demonstrates it to be a robust and reproducible biomarker with potential to be incorporated into therapeutic decision-making and clinical trial design.• The Chemotherapy response score (CRS) assesses histological effect in ovarian cancer after neoadjuvant chemotherapy (NACT). • The CRS is associated with progression-free and overall survival.• CRS could provide useful information to estimate a patient's probability of early vs. late relapse.• The CRS is an appealing primary endpoint in clinical trials as a surrogate for survival as it can be measured earlier. • We recommend the CRS be incorporated as an endpoint in clinical trials of novel therapeutic agents that have a NACT arm.
The scid mutation was backcrossed ten generations onto the NOD/Lt strain background, resulting in an immunodeficient stock (NOD/LtSz-scid/scid) with multiple defects in adaptive as well as nonadaptive immunologic function. NOD/LtSz-scid/scid mice lack functional lymphoid cells and show little or no serum Ig with age. Although NOD/(Lt-)+/+ mice develop T cell-mediated autoimmune, insulin-dependent diabetes mellitus, NOD/LtSz-scid/scid mice are both insulitis- and diabetes-free throughout life. However, because of a high incidence of thymic lymphomas, the mean lifespan of this congenic stock is only 8.5 mo under specific pathogen-free conditions. After i.v. injection of human CEM T-lymphoblastoid cells, splenic engraftment of these cells was fourfold greater in NOD/LtSz-scid/scid mice than in C.B17/Sz-scid/scid mice. Although C.B-17Sz-scid/scid mice exhibit robust NK cell activity, this activity is markedly reduced in both NOD/(Lt-)+/+ and NOD/LtSz-scid/scid mice. Presence of a functionally less mature macrophage population in NOD/LtSz-scid/scid vs C.B-17Sz-scid/scid mice is indicated by persistence in the former of the NOD/Lt strain-specific defect in LPS-stimulated IL-1 secretion by marrow-derived macrophages. Although C.B-17Sz-scid/scid and C57BL/6Sz-scid/scid mice have elevated serum hemolytic complement activity compared with their respective +/+ controls, both NOD/(LtSz-)+/+ and NOD/LtSz-scid/scid mice lack this activity. Age-dependent increases in serum Ig levels (> 1 micrograms/ml) were observed in only 2 of 30 NOD/LtSz-scid/scid mice vs 21 of 29 C.B-17/Sz-scid/scid animals. The multiple defects in innate and adaptive immunity unique to the NOD/LtSz-scid/scid mouse provide an excellent in vivo environment for reconstitution with human hematopoietic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.