Pten-/- cells display a partially defective checkpoint in response to ionizing radiation (IR). The checkpoint defect was traced to the ability of AKT to phosphorylate CHK1 at serine 280, since a nonphosphorylated mutant of CHK1 (S280A) complemented the checkpoint defect and restored CDC25A degradation. CHK1 phosphorylation at serine 280 led to covalent binding of 1 to 2 molecules of ubiquitin and cytoplasmic CHK1 localization. Primary breast carcinomas lacking PTEN expression and having elevated AKT phosphorylation had increased cytoplasmic CHK1 and displayed aneuploidy (p <0.005). We conclude that loss of PTEN and subsequent activation of AKT impair CHK1 through phosphorylation, ubiquitination, and reduced nuclear localization to promote genomic instability in tumor cells.
SummaryFar-Western overlays of soluble extracts of cauliflower revealed many proteins that bound to digoxygenin (DIG)-labelled 14-3-3 proteins. Binding to DIG-14-3-3s was prevented by prior dephosphorylation of the extract proteins or by competition with 14-3-3-binding phosphopeptides, indicating that the 14-3-3 proteins bind to phosphorylated sites. The proteins that bound to the DIG-14-3-3s were also immunoprecipitated from extracts with anti-14-3-3 antibodies, demonstrating that they were bound to endogenous plant 14-3-3 proteins. 14-3-3-binding proteins were purified from cauliflower extracts, in sufficient quantity for amino acid sequence analysis, by affinity chromatography on immobilised 14-3-3 proteins and specific elution with a 14-3-3-binding phosphopeptide. Purified 14-3-3-binding proteins included sucrose-phosphate synthase, trehalose-6-phosphate synthase, glutamine synthetases, a protein (LIM17) that has been implicated in early floral development, an approximately 20 kDa protein whose mRNA is induced by NaCl, and a calcium-dependent protein kinase that was capable of phosphorylating and rendering nitrate reductase (NR) sensitive to inhibition by 14-3-3 proteins. In contrast to the phosphorylated NR-14-3-3 complex which is activated by dissociation with 14-3-3-binding phosphopeptides, the total sugar-phosphate synthase activity in plant extracts was inhibited by up to 40% by a 14-3-3-binding phosphopeptide and the phosphopeptide-inhibited activity was reactivated by adding excess 14-3-3 proteins. Thus, 14-3-3 proteins are implicated in regulating several aspects of primary N and C metabolism.
14-3-3 proteins regulate the cell division cycle and play a pivotal role in blocking cell cycle advancement after activation of the DNA replication and DNA damage checkpoints. Here we describe a global proteomics analysis to identify proteins that bind to 14-3-3s during interphase and mitosis. 14-3-3-binding proteins were purified from extracts of interphase and mitotic HeLa cells using specific peptide elution from 14-3-3 affinity columns. Proteins that specifically bound and eluted from the affinity columns were identified by microcapillary high pressure liquid chromatography tandem mass spectrometry analysis. Several known and novel 14-3-3-interacting proteins were identified in this screen. Identified proteins are involved in cell cycle regulation, signaling, metabolism, protein synthesis, nucleic acid binding, chromatin structure, protein folding, proteolysis, nucleolar function, and nuclear transport as well as several other cellular processes. In some cases 14-3-3 binding was cell cycle-dependent, whereas in other cases the binding was shown to be cell cycle-independent. This study adds to the growing list of human 14-
Negative regulation of the Cdc25C protein phosphatase by phosphorylation on Ser 216, the 14-3-3-binding site, is an important regulatory mechanism used by cells to block mitotic entry under normal conditions and after DNA damage. During mitosis, Cdc25C is not phosphorylated on Ser 216 and ionizing radiation (IR) does not induce either phosphorylation of Ser 216, or binding to 14-3-3. Here, we show that Cdc25C is phosphorylated on Ser 214 during mitosis, which in turn prevents phosphorylation of Ser 216. Mutation of Ser 214 to Ala reconstitutes Ser 216 phosphorylation and 14-3-3 binding during mitosis. Introduction of exogenous Cdc25C(S214A) into HeLa cells depleted of endogenous Cdc25C results in a substantial delay to mitotic entry. This effect was fully reversed in a S214A/S216A double-mutant, implying that the inhibitory effect of S214A mutant was entirely dependent on Ser 216 phosphorylation. A similar regulatory mechanism may also apply to another mitotic phosphatase, Cdc25B, as well as mitotic phosphatases of other species, including Xenopus laevis. We propose that this pathway ensures that Cdc2 remains active once mitosis is initiated and is a key control mechanism for maintaining the proper order of cell-cycle transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.