We report optical absorption imaging of ultracold neutral strontium plasmas. The ion absorption spectrum determined from the images is Doppler broadened and thus provides a quantitative measure of the ion kinetic energy. For the particular plasma conditions studied, ions heat rapidly as they equilibrate during the first 250 ns after plasma formation. Equilibration leaves ions on the border between the weakly coupled gaseous and strongly coupled liquid states. On a longer time scale of microseconds, pressure exerted by the trapped electron gas accelerates the ions radially.
We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma. DOI: 10.1103 There has been significant theoretical study of the equilibration of strongly coupled plasmas [6 -12], especially in the context of plasmas produced with high-intensity lasers. In addition to generating fundamental interest, this problem challenges computational resources and techniques. Experimental results have been lacking, however, because of the fast time scales involved and limited diagnostics.Ultracold neutral plasmas [13], produced by photoionizing clouds of laser-cooled and trapped atoms, are ideal for experimental studies. The equilibration of the plasma is relatively slow ( 100 ns) due to lower plasma density. Ultracold neutral plasmas also offer a high level of control and diagnostics. By varying laser intensities and wavelengths, it is possible to accurately set the initial density and energy of the system. Optical imaging [14] provides an in situ probe of plasma properties with excellent spatial, temporal, and spectral resolution.In this Letter, we explore ion equilibration during the first microsecond after the plasma is created. The density sets the time and the energy scale for equilibration, but electron screening effects are evident. Even when the number of electrons per Debye sphere is small, the equilibration temperature of the ions agrees with a model [15] that uses a Yukawa ion-ion potential.We also observed oscillations of the ion kinetic energy. For many years, this phenomenon has been the subject of intense study through analytic calculations [7] and simulations [6,[8][9][10][11][12]] of one-component strongly coupled plasmas, but it has not previously been observed experimentally. The oscillations and their damping reflect universal dynamics of a Coulomb system with spatial correlations.Details on laser cooling, plasma formation, and imaging are given in [14,16]. The experiment starts with strontium atoms that are cooled and trapped in a magneto-optical trap (MOT). The neutral atom cloud is characterized by a temperature of about 10 mK, 2 10 8 atoms, and a Gaussian density distribution. We vary the atom density by changing the MOT parameters, or by turning the MOT off and releasing the atoms in a ballistic expansion. Up to 30% of the neutral atoms are then ionized with one photon from the cooling laser and one photon from a pulsed dye laser. The ion density distribution equals the atom distribution at the time of photoionization and is given by n i r n 0i exp ÿr 2 =2 2 , with from 0.6 to 1 mm and n 0i from 2 10 9 to 1:4 10 10 cm ÿ3 . The electron density, n e r , closely follows ...
We present results from two-photon photoassociative spectroscopy of the least-bound vibrational level of the
We report the magnetic trapping of metastable 3 P 2 atomic strontium. Atoms are cooled in a magneto-optical trap ͑MOT͒ operating on the dipole-allowed 1 S 0 -1 P 1 transition at 461 nm. Decay via 1 P 1 → 1 D 2 → 3 P 2 continuously loads a magnetic trap formed by the quadrupole magnetic field of the MOT. Over 10 8 atoms at a density of 8ϫ10 9 cm Ϫ3 and temperature of 1 mK are trapped. The atom temperature is significantly lower than what would be expected from the kinetic and potential energies of atoms as they are transferred from the MOT. This suggests the occurrence of thermalization and evaporative cooling in the magnetic trap. Laser-cooled alkaline-earth-metal atoms offer many possibilities for practical applications and fundamental studies. The two valence electrons in these systems give rise to triplet and singlet levels connected by narrow intercombination lines that are utilized for optical frequency standards ͓1͔.Laser cooling on such a transition in strontium may lead to a fast and efficient route to all-optical quantum degeneracy ͓2,3͔, and there are abundant bosonic and fermionic isotopes for use in this pursuit. The lack of hyperfine structure in the bosonic isotopes and the closed electronic shell in the ground states make alkaline-earth-metal atoms appealing testing grounds for cold-collision theories ͓4 -6͔, and collisions between metastable alkaline-earth-metal atoms is a relatively new and unexplored area for research ͓7͔.In this paper we characterize a technique that should benefit all these experiments-the continuous loading of metastable 3 P 2 atomic strontium ( 88 Sr) from a magneto-optical trap ͑MOT͒ into a purely magnetic trap. This idea was discussed in a recent theoretical study of alkaline-earth-metal atoms and ytterbium ͓8͔. Katori et al. ͓9͔ and Loftus et al. ͓10͔ have also reported observing this phenomenon in their strontium laser-cooling experiments. Continuous loading of a magnetic trap from a MOT was recently described for chromium atoms ͓11͔.This scheme should allow for collection of large numbers of atoms at high density since atoms are shelved in a dark state and are less susceptible to light-assisted collisional loss mechanisms ͓4,6,12͔. It is an ideal starting place for many experiments such as sub-Doppler laser cooling on a transition from the metastable state, as has been done with calcium ͓13͔, production of ultracold Rydberg gases ͓14͔ or plasmas ͓15͔, and evaporative cooling to quantum degeneracy. Optical frequency standards based on laser-cooled alkaline-earthmetal atoms, which are currently limited by high sample temperatures ͓1͔, may benefit from the ability to trap larger numbers of atoms and evaporatively cool them in a magnetic trap.We will first describe the operation of the Sr MOT and how this loads the magnetic trap with 3 P 2 atoms. Then we will characterize the loading and decay rates of atoms in the magnetic trap. Finally, we will present measurements of the 3 P 2 sample temperature.Sr atoms are loaded from a Zeeman-slowed atomic beam ͓16͔ and cooled and tr...
We report photoassociative spectroscopy of 88 Sr2 in a magneto-optical trap operating on the 1 S0 → 3 P1 intercombination line at 689 nm. Photoassociative transitions are driven with a laser red-detuned by 600-2400 MHz from the 1 S0 → 1 P1 atomic resonance at 461 nm. Photoassociation takes place at extremely large internuclear separation, and the photoassociative spectrum is strongly affected by relativistic retardation. A fit of the transition frequencies determines the 1 P1 atomic lifetime (τ = 5.22 ± 0.03 ns) and resolves a discrepancy between experiment and recent theoretical calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.