Identifying and monitoring locally adaptive genetic variation can have direct utility for conserving species at risk, especially when management may include actions such as translocations for restoration, genetic rescue, or assisted gene flow. However, genomic studies of local adaptation require careful planning to be successful, and in some cases may not be a worthwhile use of resources. Here, we offer an adaptive management framework to help conservation biologists and managers decide when genomics is likely to be effective in detecting local adaptation, and how to plan assessment and monitoring of adaptive variation to address conservation objectives. Studies of adaptive variation using genomic tools will inform conservation actions in many cases, including applications such as assisted gene flow and identifying conservation units. In others, assessing genetic diversity, inbreeding, and demographics using selectively neutral genetic markers may be most useful. And in some cases, local adaptation may be assessed more efficiently using alternative approaches such as common garden experiments. Here, we identify key considerations of genomics studies of locally adaptive variation, provide a road map for successful collaborations with genomics experts including key issues for study design and data analysis, and offer guidelines for interpreting and using results from genomic assessments to inform monitoring programs and conservation actions.
BackgroundEarly diagnosis of sepsis enables timely resuscitation and antibiotics and prevents subsequent morbidity and mortality. Clinical approaches relying on point-in-time analysis of vital signs or lab values are often insensitive, non-specific and late diagnostic markers of sepsis. Exploring otherwise hidden information within intervals-in-time, heart rate variability (HRV) has been documented to be both altered in the presence of sepsis, and correlated with its severity. We hypothesized that by continuously tracking individual patient HRV over time in patients as they develop sepsis, we would demonstrate reduced HRV in association with the onset of sepsis.Methodology/Principal FindingsWe monitored heart rate continuously in adult bone marrow transplant (BMT) patients (n = 21) beginning a day before their BMT and continuing until recovery or withdrawal (12±4 days). We characterized HRV continuously over time with a panel of time, frequency, complexity, and scale-invariant domain techniques. We defined baseline HRV as mean variability for the first 24 h of monitoring and studied individual and population average percentage change (from baseline) over time in diverse HRV metrics, in comparison with the time of clinical diagnosis and treatment of sepsis (defined as systemic inflammatory response syndrome along with clinically suspected infection requiring treatment). Of the 21 patients enrolled, 4 patients withdrew, leaving 17 patients who completed the study. Fourteen patients developed sepsis requiring antibiotic therapy, whereas 3 did not. On average, for 12 out of 14 infected patients, a significant (25%) reduction prior to the clinical diagnosis and treatment of sepsis was observed in standard deviation, root mean square successive difference, sample and multiscale entropy, fast Fourier transform, detrended fluctuation analysis, and wavelet variability metrics. For infected patients (n = 14), wavelet HRV demonstrated a 25% drop from baseline 35 h prior to sepsis on average. For 3 out of 3 non-infected patients, all measures, except root mean square successive difference and entropy, showed no significant reduction. Significant correlation was present amongst these HRV metrics for the entire population.Conclusions/SignificanceContinuous HRV monitoring is feasible in ambulatory patients, demonstrates significant HRV alteration in individual patients in association with, and prior to clinical diagnosis and treatment of sepsis, and merits further investigation as a means of providing early warning of sepsis.
Parentage analysis is a cornerstone of molecular ecology that has delivered fundamental insights into behaviour, ecology and evolution. Microsatellite markers have long been the king of parentage, their hypervariable nature conferring sufficient power to correctly assign offspring to parents. However, microsatellite markers have seen a sharp decline in use with the rise of next‐generation sequencing technologies, especially in the study of population genetics and local adaptation. The time is ripe to review the current state of parentage analysis and see how it stands to be affected by the emergence of next‐generation sequencing approaches. We find that single nucleotide polymorphisms (SNPs), the typical next‐generation sequencing marker, remain underutilized in parentage analysis but are gaining momentum, with 58 SNP‐based parentage analyses published thus far. Many of these papers, particularly the earlier ones, compare the power of SNPs and microsatellites in a parentage context. In virtually every case, SNPs are at least as powerful as microsatellite markers. As few as 100–500 SNPs are sufficient to resolve parentage completely in most situations. We also provide an overview of the analytical programs that are commonly used and compatible with SNP data. As the next‐generation parentage enterprise grows, a reliance on likelihood and Bayesian approaches, as opposed to strict exclusion, will become increasingly important. We discuss some of the caveats surrounding the use of next‐generation sequencing data for parentage analysis and conclude that the future is bright for this important realm of molecular ecology.
We compare the two main classes of measures of population structure in genetics: (i) fixation measures such as FST,GST, and θ and (ii) allelic differentiation measures such as Jost's D and entropy differentiation. These two groups of measures quantify complementary aspects of population structure, which have no necessary relationship with each other. We focus especially on empirical aspects of population structure relevant to conservation analyses. At the empirical level, the first set of measures quantify nearness to fixation, while the second set of measures quantify relative degree of allelic differentiation. The two sets of measures do not compete with each other. Fixation measures are often misinterpreted as measures of allelic differentiation in conservation applications; we give examples and theoretical explanations showing why this interpretation can mislead. This misinterpretation has led to the mistaken belief that the absolute number of migrants determines allelic differentiation between demes when mutation rate is low; we show that in the finite island model, the absolute number of migrants determines nearness to fixation, not allelic differentiation. We show that a different quantity, the factor that controls Jost's D, is a good predictor of the evolution of the actual genetic divergence between demes at equilibrium in this model. We also show that when conservation decisions require judgments about differences in genetic composition between demes, allelic differentiation measures should be used instead of fixation measures. Allelic differentiation of fast‐mutating markers can be used to rank pairs or sets of demes according to their differentiation, but the allelic differentiation at coding loci of interest should be directly measured in order to judge its actual magnitude at these loci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.