There is broad agreement that genetic influences are central in the development of idiopathic autism. Whether relatives manifest genetically related milder phenotypes, and if so how these relate to autism proper, has proved a more contentious issue. A review of the relevant studies indicates that relatives are sometimes affected by difficulties that appear conceptually related to autistic behaviors. These range in severity from pervasive developmental disorders to abnormalities in only one area of functioning, and possibly extend to related personality traits. Issues involved in clarifying the components of milder phenotypes and their relationship to autism are outlined.
Autism is characterized by impairments in reciprocal communication and social interaction and by repetitive and stereotyped patterns of activities and interests. Evidence for a strong underlying genetic predisposition comes from twin and family studies, although susceptibility genes have not yet been identified. A whole-genome screen for linkage, using 83 sib pairs with autism, has been completed, and 119 markers have been genotyped in 13 candidate regions in a further 69 sib pairs. The addition of new families and markers provides further support for previous reports of linkages on chromosomes 7q and 16p. Two new regions of linkage have also been identified on chromosomes 2q and 17q. The most significant finding was a multipoint maximum LOD score (MLS) of 3.74 at marker D2S2188 on chromosome 2; this MLS increased to 4.80 when only sib pairs fulfilling strict diagnostic criteria were included. The susceptibility region on chromosome 7 was the next most significant, generating a multipoint MLS of 3.20 at marker D7S477. Chromosome 16 generated a multipoint MLS of 2.93 at D16S3102, whereas chromosome 17 generated a multipoint MLS of 2.34 at HTTINT2. With the addition of new families, there was no increased allele sharing at a number of other loci originally showing some evidence of linkage. These results support the continuing collection of multiplex sib-pair families to identify autism-susceptibility genes.
Autism is a neurodevelopmental disorder that usually arises on the basis of a complex genetic predisposition. The most significant susceptibility region in the first whole genome screen of multiplex families was on chromosome 7q, although this linkage was evident only in UK IMGSAC families. Subsequently all other genome screens of non-UK families have found some evidence of increased allele sharing in an overlapping 40 cM region of 7q. To further characterize this susceptibility locus, linkage analysis has now been completed on 170 multiplex IMGSAC families. Using a 5 cM marker grid, analysis of 125 sib pairs meeting stringent inclusion criteria resulted in a multipoint maximum LOD score (MLS) of 2.15 at D7S477, whereas analysis of all 153 sib pairs generated an MLS of 3.37. The 71 non-UK sib pairs now contribute to this linkage. Linkage disequilibrium mapping identified two regions of association-one lying under the peak of linkage, the other some 27 cM distal. These results are supported in part by findings in independent German and American singleton families.
Autism is characterized by impairments in reciprocal social interaction and communication, and restricted and stereotyped patterns of interests and activities. Developmental difficulties are apparent before 3 years of age and there is evidence for strong genetic influences most likely involving more than one susceptibility gene. A two-stage genome search for susceptibility loci in autism was performed on 87 affected sib pairs plus 12 non-sib affected relativepairs, from a total of 99 families identified by an international consortium. Regions on six chromosomes (4, 7, 10, 16, 19 and 22) were identified which generated a multipoint maximum lod score (MLS) > 1. A region on chromosome 7q was the most significant with an MLS of 3.55 near markers D7S530 and D7S684 in the subset of 56 UK affected sib-pair families, and an MLS of 2.53 in all 87 affected sib-pair families. An area on chromosome 16p near the telomere was the next most significant, with an MLS of 1.97 in the UK families, and 1.51 in all families. These results are an important step to-wards identifying genes predisposing to autism; establishing their general applicability requires further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.