Objective. Interleukin-10 (IL-10) is a potent inhibitor of the proinflammatory cytokines, including tumor necrosis factor a and IL-1, which are considered important in the pathogenesis of rheumatoid arthritis (RA). The study was undertaken to establish whether IL-10 can ameliorate arthritis in the collagen-induced arthritis (CIA) model of RA.Methods. DBM1 mice were immunized with bovine type I1 collagen in adjuvant, and treated daily after disease onset with recombinant murine IL-10 or with saline as a control. Mice were monitored for paw swelling and clinical score. Histologic analysis was also performed.Results. IL-10 treatment of established CIA inhibited paw swelling (P < O.OOOl), as well as disease progression as defined by clinical score (P < 0.0002).Cartilage destruction, as assessed histologically, was reduced in IL-16treated mice compared with controls (P < 0.01).Conclusion. IL-10 suppresses established CIA, probably by inhibiting proinflammatory cytokine production. Our results, taken together with previously reported findings, indicate a potential therapeutic role for IL-10 in RA.
Previous studies in the laboratory have shown that the pro-inflammatory cytokine tumor necrosis factor (TNF)-alpha plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA). The mechanisms involved in regulating monocyte/macrophage cytokine production are not yet fully understood, but are thought to involve both soluble factors and cell/cell contact with other cell types. We and others have previously demonstrated that T cells activated through the T cell receptor/CD3 complex induce monocyte TNF-alpha production by contact-mediated signals. In this report, we investigated further whether T cells activated by cytokines in the absence of T cell receptor stimulation also regulate monocyte cytokine production. T cells were activated in an antigen-independent manner using the cytokines interleukin (IL)-15 or IL-2 alone, or in combination with IL-6 and TNF-alpha. Subsequently, T cells were fixed and incubated with monocytes. Fixed, cytokine-stimulated T cells induced monocytes to secrete TNF-alpha in a dose-dependent manner, but did not induce secretion of IL-10, a potent endogenous down-regulator of TNF-alpha and other pro-inflammatory cytokines. Stimulation of monocyte TNF-alpha was markedly inhibited when T cells were physically separated from monocytes within the tissue culture well, confirming that T cell contact is necessary. T cell acquisition of monocyte-activating capacity was shown to be dependent on the period of cytokine stimulation, with T cells activated for 8 days more effective than T cells activated for shorter periods. Addition of interferon-gamma or granulocyte/macrophage colony-stimulating factor to the T cell/monocyte cultures enhanced T cell induction of monocyte TNF-alpha by threefold and ninefold, respectively. The results from this model of cognate interaction suggest that cytokine-stimulated T cells, interacting with macrophages in the rheumatoid synovial membrane, may contribute to the continuous excessive production of TNF-alpha observed in the RA joint, and to the imbalance of pro-inflammatory cytokines over anti-inflammatory cytokines.
Type 1 diabetes is a T cell-mediated disease in which B cells serve critical Ag-presenting functions. In >95% of type 1 diabetic patients the B cell response to the glutamic acid decarboxylase 65 (GAD65) autoantigen is exclusively directed at conformational epitopes residing on the surface of the native molecule. We have examined how the epitope specificity of Ag-presenting autoimmune B cell lines, derived from a type 1 diabetic patient, affects the repertoire of peptides presented to DRB1*0401-restricted T cell hybridomas. The general effect of GAD65-specific B cells was to enhance Ag capture and therefore Ag presentation. The enhancing effect was, however, restricted to T cell determinants located outside the B cell epitope region, because processing/presentation of T cell epitopes located within the autoimmune B cell epitope were suppressed in a dominant fashion. A similar effect was observed when soluble Abs formed immune complexes with GAD65 before uptake and processing by splenocytes. Thus, GAD65-specific B cells and the Abs they secrete appear to modulate the autoimmune T cell repertoire by down-regulating T cell epitopes in an immunodominant area while boosting epitopes in distant or cryptic regions.
This review examines the field of current HLA class II transgenic mouse models and the individual approaches applied in production of these mice. The majority of these mice have been created with the objective of obtaining a disease model with clinical features mimicking human autoimmune disease. The development process of a different type of HLA class II transgenic mice, which are designed to function as a substitute for a normal human immune system in studies of human autoantigens, is described. Several HLA-DR4 transgenic lines with normally expressed HLA-DR4 molecules have been produced. To obtain adequate positive selection of the HLA-DR4-restricted CD4+ T-cell repertoire in these mice it is essential both to introduce a human CD4 transgene, and to delete the murine major histocompatibility complex (MHC) class II molecules. These HLA-DR4 transgenic mice have been used to determine the immunogenic CD4+ T-cell epitopes of several human autoantigenic proteins.
It is widely accepted that extensive cross-linking of surface immunoglobulin (sIg) receptors on mature B cells promotes their activation and progression through the cell cycle. A commonly employed method to maximize receptor cross-linking via anti-receptor antibodies is to immobilize them on tissue culture plastic. We show here that immobilizing monoclonal anti-mu or anti-delta antibodies, which are mitogenic in solution, on plastic abrogates their capacity to induce DNA synthesis in mature murine B cells, even in the presence of interleukin-4 (IL-4). The cells do become abortively activated, as evidenced by up-regulation of major histocompatibility complex class II antigen levels, but subsequently virtually all of them die, manifesting DNA fragmentation characteristic of apoptosis. The induction of apoptosis is abrogated by the inclusion of either IL-4 or anti-CD40 antibodies in the cultures, with the two stimuli acting in concert. We believe that the system represents a polyclonal model of clonal deletion tolerance in mature B cells, such as may be induced under physiological conditions by antigens with repeating epitopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.