Debbie (2015) Improvement to thin film CdTe solar cells with controlled back surface oxidation. Solar Energy Materials and Solar Cells, 136. pp. 213-217.
This paper reports important developments achieved with CdTe thin-film photovoltaic devices produced using metalorganic chemical vapour deposition at atmospheric pressure. In particular, attention was paid to understand the enhancements in solar cell conversion efficiency, to develop the cell design, and assess scalability towards modules. Improvements in the device performance were achieved by optimising the high-transparency window layer (Cd 0.3 Zn 0.7 S) and a device-activation anneal. These increased the fill factor and open-circuit voltage to 77 ± 1% and 785 ± 7 mV, respectively, compared with 69 ± 3% and 710 ± 10 mV for previous baseline devices with no anneal and thicker Cd 0.3 Zn 0.7 S. The enhancement in these parameters is associated with the two fold to three fold increase in the net acceptor density of CdTe upon air annealing and a decrease in the back contact barrier height from 0.24 ± 0.01 to 0.16 ± 0.02 eV. The optimum thickness of the window layer for maximum photocurrent was 150 nm. The cell size was scaled from 0.25 to 2 cm 2 in order to assess its impact on the device series resistance and fill factor. Finally, micro-module devices utilising series-connected 2-cm 2 sub-cells were fabricated using a combination of laser and mechanical scribing techniques. An initial module-to-cell efficiency ratio of 0.9 was demonstrated for a six-cell module with the use of the improved device structure and processing. Prospects for CdTe photovoltaic modules grown by metalorganic chemical vapour deposition are commented on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.