The activation of the NF-κB transcription factor is a major adaptive response induced upon treatment with EGFR kinase inhibitors, leading to the emergence of resistance in nonsmall cell lung cancer and other tumor types. To suppress this survival mechanism, we developed new thiourea quinazoline derivatives that are dual inhibitors of both EGFR kinase and the NF-κB activity. Optimization of the hit compound, identified in a NF-κB reporter gene assay, led to compound 9b, exhibiting a cellular IC for NF-κB inhibition of 0.3 μM while retaining a potent EGFR kinase inhibition (IC = 60 nM). The dual inhibitors showed a higher potency than gefitinib to inhibit cell growth of EGFR-overexpressing tumor cell lines in vitro and in a xenograft model in vivo, while no signs of toxicity were observed. An investigation of the molecular mechanism of NF-κB suppression revealed that the dual inhibitors depleted the transcriptional coactivator CREB-binding protein from the NF-κB complex in the nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.