Giardia lamblia (syn. duodenalis, intestinalis) is a globally occurring micro-aerophilic human parasite that causes gastrointestinal disease. Standard treatment of G. lamblia infections is based on the 5-nitroimidazole drugs metronidazole and tinidazole. In two other micro-aerophilic parasites, Entamoeba histolytica and Trichomonas vaginalis, 5-nitroimidazole drugs bind to proteins involved in the thioredoxin-mediated redox network and disrupt the redox equilibrium by inhibiting thioredoxin reductase and depleting intracellular thiol pools. The major aim of this study was to assess whether nitroimidazoles exert a similar toxic effect on G. lamblia physiology. The 5-nitroimidazoles metronidazole and tinidazole were found to bind to the same subset of proteins including thioredoxin reductase. However, in contrast to E. histolytica and T. vaginalis, none of the other proteins bound are candidates for being involved in the thioredoxin-mediated redox network. Translation elongation factor EF-1γ, an essential factor in protein synthesis, was widely degraded upon treatment with 5-nitroimidazoles. 2-Nitroimidazole (azomycin) and the 5-nitroimidazole ronidazole did not bind to any G. lamblia proteins, which is in contrast to previous findings in E. histolytica and T. vaginalis. All nitroimidazoles tested reduced intracellular thiol pools in G. lamblia, but metronidazole, also in contrast to the situation in the other two parasites, had the slightest effect. Taken together, our results suggest that nitroimidazole drugs affect G. lamblia in a fundamentally different way than E. histolytica and T. vaginalis.
Background Norway spruce trees in subalpine forests frequently face infections by the needle rust fungus Chrysomyxa rhododendri, which causes significant growth decline and increased mortality of young trees. Yet, it is unknown whether trees actively respond to fungal attack by activating molecular defence responses and/or respective gene expression. Results Here, we report results from an infection experiment, in which the transcriptomes (via RNA-Seq analysis) and phenolic profiles (via UHPLC-MS) of control and infected trees were compared over a period of 39 days. Gene expression between infected and uninfected ramets significantly differed after 21 days of infection and revealed already known, but also novel candidate genes involved in spruce molecular defence against pathogens. Conclusions Combined RNA-Seq and biochemical data suggest that Norway spruce response to infection by C. rhododendri is restricted locally and primarily activated between 9 and 21 days after infestation, involving a potential isolation of the fungus by a hypersensitive response (HR) associated with an activation of phenolic pathways. Identified key regulatory genes represent a solid basis for further specific analyses in spruce varieties with varying susceptibility, to better characterise resistant clones and to elucidate the resistance mechanism.
The unicellular protozoan Histomonas meleagridis is notorious for being the causative agent of histomonosis, which can cause high mortality in turkeys and substantial production losses in chickens. The complete absence of commercially available curative strategies against the disease renders the devising of novel approaches a necessity. A fundamental step toward this objective is to understand the flagellate's virulence and attenuation mechanisms. For this purpose we have previously conducted a comparative proteomic analysis of an in vitro cultivated virulent and attenuated histomonad parasite using two-dimensional electrophoresis and MALDI-TOF/TOF. The current work aimed to substantially extend the knowledge of the flagellate's proteome by applying 2D-DIGE and sequential window acquisition of all theoretical mass spectra (SWATH) MS as tools on the two well-defined strains. In the gel-based experiments, 49 identified protein spots were found to be differentially expressed, of which 37 belonged to the in vitro cultivated virulent strain and 12 to the attenuated one. The most frequently identified proteins in the virulent strain take part in cytoskeleton formation, carbohydrate metabolism and adaptation to stress. However, post-translationally modified or truncated ubiquitous cellular proteins such as actin and GAPDH were identified as upregulated in multiple gel positions. This indicated their contribution to processes not related to cytoskeleton and carbohydrate metabolism, such as fibronectin or plasminogen binding. Proteins involved in cell division and cytoskeleton organization were frequently observed in the attenuated strain. The findings of the gel-based studies were supplemented by the gel-free SWATH MS analysis, which identified and quantified 42 significantly differentially regulated proteins. In this case proteins with peptidase activity, metabolic proteins and actin-regulating proteins were the most frequent findings in the virulent strain, while proteins involved in hydrogenosomal carbohydrate metabolism dominated the results in the attenuated one.
The current study focused on Histomonas meleagridis, a unicellular protozoan, responsible for histomonosis in poultry. Recently, the occurrence of the disease increased due to the ban of effective chemotherapeutic drugs. Basic questions regarding the molecular biology, virulence mechanisms or even life cycle of the flagellate are still puzzling. In order to address some of these issues, we conducted a comparative proteomic analysis of a virulent and an attenuated H. meleagridis strain traced back to a single cell and propagated in vitro as monoxenic mono-eukaryotic cultures. Using two-dimensional electrophoresis (2-DE) for proteome visualization with computational 2-DE gel image and statistical analysis, upregulated proteins in either of the two H. meleagridis strains were detected. Statistical analysis fulfilling two criteria (≥threefold upregulation and P < 0.05) revealed 119 differentially expressed protein spots out of which 62 spots were noticed in gels with proteins from the virulent and 57 spots in gels with proteins from the attenuated culture. Mass spectrometric analysis of 32 protein spots upregulated in gels of the virulent strain identified 17 as H. meleagridis-specific. The identification revealed that these spots belonged to eight different proteins, with the majority related to cellular stress management. Two ubiquitous cellular proteins, actin and enolase, were upregulated in multiple gel positions in this strain, indicating either post-translational modification or truncation, or even both. Additionally, a known virulence factor named legumain cysteine peptidase was also detected. In contrast to this, mass spectrometric analysis of 49 protein spots, upregulated in gels of the attenuated strain, singled out 32 spots as specific for the flagellate. These spots were shown to correspond to 24 different proteins that reflect the increased metabolism, in vitro adaptation of the parasite, and amoeboid morphology. In addition to H. meleagridis proteins, the analysis identified differential expression of Escherichia coli DH5α proteins that could have been influenced by the co-cultivated H. meleagridis strain, indicating a reciprocal interaction of these two organisms during monoxenic cultivation.
BackgroundProteases produced by many microorganisms, including oomycetes, are crucial for their growth and development. They may also play a critical role in disease manifestation. Epizootic ulcerative syndrome is one of the most destructive fish diseases known. It is caused by the oomycete Aphanomyces invadans and leads to mass mortalities of cultured and wild fish in many countries. The areas of concern are Australia, China, Japan, South and Southeast Asian countries and the USA. Extracellular proteases produced by this oomycete are believed to trigger EUS pathogenesis in fish. To address this activity, we collected the extracellular products (ECP) of A. invadans and identified the secreted proteins using SDS-PAGE and mass spectrometery. A. invadans was cultivated in liquid Glucose-Peptone-Yeats media. The culture media was ultra-filtered through 10 kDa filters and analysed using SDS-PAGE. Three prominent protein bands from the SDS gel were excised and identified by mass spectrometery. Furthermore, we assessed their proteolytic effect on casein and immunoglobulin M (IgM) of rainbow trout (Oncorhynchus mykiss) and giant gourami (Osphronemus goramy). Antiprotease activity of the fish serum was also investigated.ResultsBLASTp analysis revealed that the prominent secreted proteins were proteases, mainly of the serine and cysteine types. Proteins containing fascin-like domain and bromodomain were also identified. We could demonstrate that the secreted proteases showed proteolytic activity against the casein and the IgM of both fish species. The anti-protease activity experiment showed that the percent inhibition of the common carp serum was 94.2% while that of rainbow trout and giant gourami serum was 7.7 and 12.9%, respectively.ConclusionsThe identified proteases, especially serine proteases, could be the potential virulence factors in A. invadans and, hence, are candidates for further functional and host–pathogen interaction studies. The role of identified structural proteins in A. invadans also needs to be investigated further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.