In the past few years, high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has matured to a true alternative to antibody-based immunoassays in routine therapeutic drug monitoring. In transplantation medicine, mass spectrometry-based assessment of immunosuppressant drug levels is considered a gold standard diagnostic procedure. We describe a fast state-of-the-art routine online solid-phase extraction (SPE) HPLC-MS/MS analysis platform that allows monitoring of cyclosporine A, tacrolimus, sirolimus and everolimus from 50-microl aliquots of EDTA whole blood specimens within 3.4 min total analysis time. Sample purification is done by offline protein precipitation followed by two automated chromatographic separation steps. Mass spectrometry-based analyte quantification relies on selected reaction monitoring experiments. The assay underwent complete validation and performance evaluation studies and performs very well in several international proficiency testing schemes. In daily routine, it allows reporting of about 75 patient sample results per work shift with a typical total individual sample turnaround time of less than 3 h.
Secondary phenolic metabolites are involved in plant responses to various biotic stress factors, and are apparently important for the defense against fungal pathogens. In this study, we investigated their role in defense against the rust Chrysomyxa rhododendri in Norway spruce. The fungal pathogen undergoes a seasonal lifecycle with host shift; after overwintering in rhododendron shrubs, it attacks the sprouting current-year spruce needles and causes needle fall in autumn. Repeated infections lead to reduced timber yield and severe problems with rejuvenation in subalpine Norway spruce forests. Trees with varying susceptibility to infection by C. rhododendri were selected and foliar phenolic composition was assessed using UHPLC-MS. We report on seasonal accumulation patterns and infection-related changes in the concentrations of 16 metabolites, including flavonoids, stilbenes, simple phenylpropanoids and the precursor shikimic acid, and their correlation with the infection degree of the tree. We found significant variation in the phenolic profiles during needle development: flavonoids were predominant in the first weeks after sprouting, whereas stilbenes, picein and shikimic acid increased during the first year. Following infection, several flavonoids and resveratrol increased up to 1.8 fold in concentration, whereas picein and shikimic acid were reduced by about 70 and 60%, respectively. The constitutive and early stage infection-induced concentrations of kaempferol, quercetin and taxifolin as well as the late stage infection-induced concentrations of stilbenes and picein were negatively correlated with infection degree. We conclude that a combination of constitutive and inducible accumulation of phenolic compounds is associated with the lower susceptibility of individual trees to C. rhododendri. The potentially fungicidal flavonoid aglycones may limit hyphal growth and prevent development of infection symptoms, and high levels of stilbenes may impede the infection of older needles. The presented results underline a highly compound-specific seasonal accumulation and defense response of Norway spruce and may facilitate the selection of promising trees for breeding programs.
During desiccation, the cytoplasm of orthodox seeds solidifies into an intracellular glass with highly restricted diffusion and molecular mobility. Temperature and water content govern seed ageing rates, while oxygen (O2) can promote deteriorative reactions. However, whether cytoplasmic physical state affects involvement of O2 in seed ageing remains unresolved. We aged Pinus densiflora seeds by controlled deterioration (CD) at 45 °C and distinct relative humidity (RH), resulting in cells having glassy (11 and 30% RH) or fluid (60 and 80% RH) cytoplasm. Hypoxic conditions (0.4% O2) during CD delayed seed deterioration, lipid peroxidation, and decline of antioxidants (glutathione, α- and γ-tocopherol), but only when the cytoplasm was glassy. In contrast, when the cytoplasm was fluid, seeds deteriorated at the same rate regardless of O2 availability, while associating with limited lipid peroxidation, detoxification of lipid peroxide products, substantial loss of glutathione, and resumption of glutathione synthesis. Changes in metabolite profiles provided evidence of other O2-independent enzymatic reactions in a fluid cytoplasm, including aldo-keto reductase and glutamate decarboxylase activities. Biochemical profiles of seeds stored under seed bank conditions resembled those obtained after CD regimes that maintained glassy cytoplasm. Overall, O2 contributed more to seed ageing when the cytoplasm was glassy, rather than fluid.
Crude rice bran oil contains tocopherols (vitamin E), carotenoids (vitamin A), and phytosterols, which possess antioxidant activities and show promising effects as preventive and therapeutic agents. The aim of this work was to establish methods and to compare C18 and C30 silica stationary phases in order to separate and detect tocopherols, carotenoids, and gamma-oryzanol in one single run. Comparing RP-LC on silica C18 and C30, higher resolution between all target compounds was obtained using the C30 stationary phase. Methanol was used as eluent and the elution strength was increased by the addition of tert-butyl methyl ether for highly hydrophobic analytes such as gamma-oryzanol. Detection was accomplished by diode array detection from 200 to 500 nm. Absorbance maxima were found at 295 nm for tocopherols, 324 nm for gammaoryzanol, and 450 nm for carotenoids. Furthermore, compounds were characterized and identified on the basis of their UV-spectra. Both RP systems were coupled to MS (LC-MS) by using an atmospheric pressure chemical ionization interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.