BackgroundWe recently found that brain tissue from patients with type-2 diabetes (T2D) and cognitive impairment contains deposits of amylin, an amyloidogenic hormone synthesized and co-secreted with insulin by pancreatic β-cells. Amylin deposition is promoted by chronic hypersecretion of amylin (hyperamylinemia), which is common in humans with obesity or pre-diabetic insulin resistance. Human amylin oligomerizes quickly when oversecreted, which is toxic, induces inflammation in pancreatic islets and contributes to the development of T2D. Here, we tested the hypothesis that accumulation of oligomerized amylin affects brain function.MethodsIn contrast to amylin from humans, rodent amylin is neither amyloidogenic nor cytotoxic. We exploited this fact by comparing rats overexpressing human amylin in the pancreas (HIP rats) with their littermate rats which express only wild-type (WT) non-amyloidogenic rodent amylin. Cage activity, rotarod and novel object recognition tests were performed on animals nine months of age or older. Amylin deposition in the brain was documented by immunohistochemistry, and western blot. We also measured neuroinflammation by immunohistochemistry, quantitative real-time PCR and cytokine protein levels.ResultsCompared to WT rats, HIP rats show i) reduced exploratory drive, ii) impaired recognition memory and iii) no ability to improve the performance on the rotarod. The development of neurological deficits is associated with amylin accumulation in the brain. The level of oligomerized amylin in supernatant fractions and pellets from brain homogenates is almost double in HIP rats compared with WT littermates (P < 0.05). Large amylin deposits (>50 μm diameter) were also occasionally seen in HIP rat brains. Accumulation of oligomerized amylin alters the brain structure at the molecular level. Immunohistochemistry analysis with an ED1 antibody indicates possible activated microglia/macrophages which are clustering in areas positive for amylin infiltration. Multiple inflammatory markers are expressed in HIP rat brains as opposed to WT rats, confirming that amylin deposition in the brain induces a neuroinflammatory response.ConclusionsHyperamylinemia promotes accumulation of oligomerized amylin in the brain leading to neurological deficits through an oligomerized amylin-mediated inflammatory response. Additional studies are needed to determine whether brain amylin accumulation may predispose to diabetic brain injury and cognitive decline.
Rubinstein-Taybi syndrome (RTS) is a rare multiple congenital anomaly/intellectual impairment syndrome. Loss of function in CREBBP or EP300 genes has been found in about 50% of patients with RTS. Genotype-phenotype correlations were investigated in 93 patients meeting diagnostic criteria for RTS during 2 international RTS family conferences. Mutation analysis of CREBBP was performed on all 31 coding exons and exon-intron junctions; a subset of patients had FISH analysis for large deletions. A total of 64 different variations were observed in the DNA sequence, and determined to be definitive mutations in 52 patients (56%). Mutations detected included: 10 missense mutations; 36 truncating or splice-site mutations; and 6 large deletions detectable by FISH. Fourteen patients had synonymous changes of unknown significance. The majority of mutations affected the HAT domain of CREBBP or predicted termination of the protein before the HAT region. Extensive phenotypic data were collected on each patient and analyzed to determine correlations with mutation types, that is, truncating, large deletions, single amino acid substitutions, or no CREBBP mutation. All four groups displayed the characteristic facial and thumb dysmorphology. Growth retardation in height and weight was seen more frequently in patients with no CREBBP mutation; seizure disorder was more frequent in those with CREBBP mutations. Degree of mental retardation was similar in all groups, although there was a trend toward lower IQ and autistic features in patients with large deletions. Similarity in phenotype between the groups implies that the several genes involved in causing RTS likely have effects through the same pathway.
BackgroundIntracellular Na+ concentration ([Na+]i) regulates Ca2+ cycling, contractility, metabolism, and electrical stability of the heart. [Na+]i is elevated in heart failure, leading to arrhythmias and oxidative stress. We hypothesized that myocyte [Na+]i is also increased in type 2 diabetes (T2D) due to enhanced activity of the Na+–glucose cotransporter.Methods and ResultsTo test this hypothesis, we used myocardial tissue from humans with T2D and a rat model of late-onset T2D (HIP rat). Western blot analysis showed increased Na+–glucose cotransporter expression in failing hearts from T2D patients compared with nondiabetic persons (by 73±13%) and in HIP rat hearts versus wild-type (WT) littermates (by 61±8%). [Na+]i was elevated in HIP rat myocytes both at rest (14.7±0.9 versus 11.4±0.7 mmol/L in WT) and during electrical stimulation (17.3±0.8 versus 15.0±0.7 mmol/L); however, the Na+/K+-pump function was similar in HIP and WT cells, suggesting that higher [Na+]i is due to enhanced Na+ entry in diabetic hearts. Indeed, Na+ influx was significantly larger in myocytes from HIP versus WT rats (1.77±0.11 versus 1.29±0.06 mmol/L per minute). Na+–glucose cotransporter inhibition with phlorizin or glucose-free solution greatly reduced Na+ influx in HIP myocytes (to 1.20±0.16 mmol/L per minute), whereas it had no effect in WT cells. Phlorizin also significantly decreased glucose uptake in HIP myocytes (by 33±9%) but not in WT, indicating an increased reliance on the Na+–glucose cotransporter for glucose uptake in T2D hearts.ConclusionsMyocyte Na+–glucose cotransport is enhanced in T2D, which increases Na+ influx and causes Na+ overload. Higher [Na+]i may contribute to arrhythmogenesis and oxidative stress in diabetic hearts.
Hypersecretion of amylin is common in individuals with prediabetes, causes amylin deposition and proteotoxicity in pancreatic islets, and contributes to the development of type 2 diabetes. Recent studies also identified amylin deposits in failing hearts from patients with obesity or type 2 diabetes and demonstrated that hyperamylinemia accelerates the development of heart dysfunction in rats expressing human amylin in pancreatic β-cells (HIP rats). To further determine the impact of hyperamylinemia on cardiac myocytes, we investigated human myocardium, compared diabetic HIP rats with diabetic rats expressing endogenous (nonamyloidogenic) rat amylin, studied normal mice injected with aggregated human amylin, and developed in vitro cell models. We found that amylin deposition negatively affects cardiac myocytes by inducing sarcolemmal injury, generating reactive aldehydes, forming amylin-based adducts with reactive aldehydes, and increasing synthesis of the proinflammatory cytokine interleukin-1β (IL-1β) independently of hyperglycemia. These results are consistent with the pathological role of amylin deposition in the pancreas, uncover a novel contributing mechanism to cardiac myocyte injury in type 2 diabetes, and suggest a potentially treatable link of type 2 diabetes with diabetic heart disease. Although further studies are necessary, these data also suggest that IL-1β might function as a sensor of myocyte amylin uptake and a potential mediator of myocyte injury.
Background Despite numerous clinical and animal studies, the role of sex steroid hormones on lipoprotein metabolism and atherosclerosis remain controversial. Objective We sought to determine the effects of endogenous estrogen and testosterone on lipoprotein levels and atherosclerosis using mice fed a low-fat diet with no added cholesterol. Methods Male and female low-density lipoprotein receptor-deficient mice were fed an open stock low-fat diet (10% of kcals from fat) for 2, 4, or 17 weeks. Ovariectomy, orchidectomy, or sham surgeries were performed to evaluate the effects of the presence or absence of endogenous hormones on lipid levels, lipoprotein distribution, and atherosclerosis development. Results Female mice fed the study diet for 17 weeks had a marked increase in levels of total cholesterol, triglycerides, apolipoprotein-B containing lipoproteins, and atherosclerosis compared with male mice. Surprisingly, ovariectomy in female mice had no effect on any of these parameters. In contrast, castration of male mice markedly increased total cholesterol concentrations, triglycerides, apolipoprotein B-containing lipoproteins, and atherosclerotic lesion formation compared with male and female mice. Conclusions These data suggest that endogenous androgens protect against diet-induced increases in cholesterol concentrations, formation of proatherogenic lipoproteins, and atherosclerotic lesions formation. Conversely orchidectomy, which decreases androgen concentrations, promotes increases in cholesterol concentrations, proatherogenic lipoprotein formation, and atherosclerotic lesion formation in lowdensity lipoprotein receptor-deficient mice in response to a low-fat diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.