The highest amount of weekly exercise, with minimal weight change, had widespread beneficial effects on the lipoprotein profile. The improvements were related to the amount of activity and not to the intensity of exercise or improvement in fitness.
Dohm GL, Cortright RN, Lust RM. Artificial selection for high-capacity endurance running is protective against high-fat diet-induced insulin resistance. Am J Physiol Endocrinol Metab 293: E31-E41, 2007. First published March 6, 2007; doi:10.1152/ajpendo.00500.2006.-Elevated oxidative capacity, such as occurs via endurance exercise training, is believed to protect against the development of obesity and diabetes. Rats bred both for low (LCR)-and high (HCR)-capacity endurance running provide a genetic model with inherent differences in aerobic capacity that allows for the testing of this supposition without the confounding effects of a training stimulus. The purpose of this investigation was to determine the effects of a high-fat diet (HFD) on weight gain patterns, insulin sensitivity, and fatty acid oxidative capacity in LCR and HCR male rats in the untrained state. Results indicate chow-fed LCR rats were heavier, hypertriglyceridemic, less insulin sensitive, and had lower skeletal muscle oxidative capacity compared with HCR rats. Upon exposure to an HFD, LCR rats gained more weight and fat mass, and their insulin resistant condition was exacerbated, despite consuming similar amounts of metabolizable energy as chow-fed controls. These metabolic variables remained unaltered in HCR rats. The HFD increased skeletal muscle oxidative capacity similarly in both strains, whereas hepatic oxidative capacity was diminished only in LCR rats. These results suggest that LCR rats are predisposed to obesity and that expansion of skeletal muscle oxidative capacity does not prevent excess weight gain or the exacerbation of insulin resistance on an HFD. Elevated basal skeletal muscle oxidative capacity and the ability to preserve liver oxidative capacity may protect HCR rats from HFD-induced obesity and insulin resistance. fatty acid; lipid metabolism; liver; heart; skeletal muscle THE INCIDENCE OF METABOLIC DISEASES such as obesity and type II diabetes is increasing dramatically and is strongly linked to the rise in cardiovascular disease. In 2002, ϳ64% of the population in the United States was classified as overweight or obese (22), and health care costs attributable to these conditions exceeded $78 billion dollars (13). Although type II diabetes afflicts a substantially lower percentage (ϳ6.3%) of the population (9), this disease accounts for $132 billion in annual health care costs (24). With the increase in the incidence of such metabolic diseases reaching epidemic proportions and the threat of health care costs spiraling out of control, much research has been focused toward elucidating the mechanisms involved in the etiology of these conditions in hopes of ultimately discovering better treatments. Several therapies are currently used to alleviate symptoms of these diseases, but other than dietary modifications, endurance exercise is the only universally prescribed treatment.Enhanced aerobic capacity has long been associated with diminished morbidity and improvements in functional living, yet all the physiological mechanisms ...
Skeletal muscle contains two populations of mitochondria that appear to be differentially affected by disease and exercise training. It remains unclear how these mitochondrial subpopulations contribute to fiber type-related and/or training-induced changes in fatty acid oxidation and regulation of carnitine palmitoyltransferase-1beta (CPT1beta), the enzyme that controls mitochondrial fatty acid uptake in skeletal muscle. To this end, we found that fatty acid oxidation rates were 8.9-fold higher in subsarcolemmal mitochondria (SS) and 5.3-fold higher in intermyofibrillar mitochondria (IMF) that were isolated from red gastrocnemius (RG) compared with white gastrocnemius (WG) muscle, respectively. Malonyl-CoA (10 muM), a potent inhibitor of CPT1beta, completely abolished fatty acid oxidation in SS and IMF mitochondria from WG, whereas oxidation rates in the corresponding fractions from RG were inhibited only 89% and 60%, respectively. Endurance training also elicited mitochondrial adaptations that resulted in enhanced fatty acid oxidation capacity. Ten weeks of treadmill running differentially increased palmitate oxidation rates 100% and 46% in SS and IMF mitochondria, respectively. In SS mitochondria, elevated fatty acid oxidation rates were accompanied by a 48% increase in citrate synthase activity but no change in CPT1 activity. Nonlinear regression analyses of mitochondrial fatty acid oxidation rates in the presence of 0-100 muM malonyl-CoA indicated that IC(50) values were neither dependent on mitochondrial subpopulation nor affected by exercise training. However, in IMF mitochondria, training reduced the Hill coefficient (P < 0.05), suggesting altered CPT1beta kinetics. These results demonstrate that endurance exercise provokes subpopulation-specific changes in mitochondrial function that are characterized by enhanced fatty acid oxidation and modified CPT1beta-malonyl-CoA dynamics.
Omnical, Parvo, Cosmed, and DeltaTrac had greater accuracy and reliability. The small number of instruments tested and expected differences in gas calibration variability limits the generalizability of conclusions. Finally, humidity and temperature could be modified in the laboratory to optimize IC conditions.
Background The standard clinical approach for reducing cardiovascular disease risk due to dyslipidemia is to prescribe changes in diet and physical activity. The purpose of the current study was to determine if, across a range of dietary patterns, there were variable lipoprotein responses to an aerobic exercise training intervention. Methods Subjects were participants in the Studies of a Targeted Risk Reduction Intervention through Defined Exercise (STRRIDE I), a supervised exercise program in sedentary, overweight subjects randomized to 6 months of inactivity or one of 3 aerobic exercise programs. To characterize diet patterns observed during the study, we calculated a modified z-score that included intakes of total fat, saturated fat, trans fatty acids, cholesterol, omega-3 fatty acids and fiber as compared to the 2006 AHA diet recommendations. Linear models were used to evaluate relationships between diet patterns and exercise effects on lipoproteins/lipids. Results Independent of diet, exercise had beneficial effects on LDL-cholesterol particle number, LDL-cholesterol size, HDL-cholesterol, HDL-cholesterol size, and triglycerides (P<0.05 for all). However, having a diet pattern that closely adhered to AHA recommendations was not related to changes in these or any other serum lipids or lipoproteins in any of the exercise groups. Conclusions We found that even in sedentary individuals whose habitual diets vary in the extent of adherence to AHA dietary recommendations, a rigorous, supervised exercise intervention can achieve significant beneficial lipid effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.