We describe the term male infant of asymptomatic, healthy nonconsanguineous parents presenting on the first day of life with nonketotic hypoglycemia, seizures, hepatomegaly, cardiomegaly with biventricular hypertrophy, and ventricular arrhythmias. Cranial ultrasound revealed cystic dysplasia with several foci of hyperechogenicity within the right basal ganglia. Free carnitine was markedly decreased in the urine and plasma with a pronounced elevation of plasma long-chain acylcarnitines. Fibroblast carnitine palmitoyltransferase II activity was reduced to 26% and 38% in the father and mother, respectively. The infant expired on day 5 of life from malignant ventricular tachy-arrhythmias. Diffuse lipid accumulation was evident at autopsy, including in the liver, heart, kidney, adrenal cortex, skeletal muscle, and lungs. This new case of infantile CPT-II deficiency illustrates the severity of the early onset form of CPT-II deficiency.
Rapid epithelial repair (restitution) after injury is required to maintain barrier function of the gastrointestinal mucosa and skin and is thought to be a highly ATP-dependent process that would be inhibited under hypoxic conditions. However, little is known about the metabolic pathways required for restitution. Thus, this study was undertaken to evaluate, in vitro, the role of oxidative respiration and glycolysis in restitution after injury. To this end, restitution of the bullfrog gastric mucosa was evaluated under the following conditions: 1) blockade of mitochondrial respiration; 2) blockade of glycolysis; or 3) absence of glucose. The extent of mucosal repair after injury was evaluated by electrophysiology and morphology. Cell migration, repolarization, and the formation of tight junctions after injury occurred during blockade of mitochondrial respiration, whereas the recovery of mucosal barrier function did not. In contrast, glycolytic inhibition completely blocked all aspects of restitution by inhibiting the migration of surface epithelial cells. Restitution occurred in tissues incubated with glucose-free solutions, suggesting that cells contain sufficient glucose (glycogen) to drive glycolysis for many hours. Our results demonstrate that the glycolytic pathway is essential for restitution after injury in the bullfrog gastric mucosa and that all but complete repair of barrier function occurs in the absence of mitochondrial respiration.
This study was undertaken to determine the mechanism by which ammonium chloride (NH(4)Cl) inhibits stimulated acid secretion in the bullfrog gastric mucosa. To this end, four possible pathways of inhibition were studied: 1) blockade of basolateral K(+) channel, 2) blockade of ion transport activity, 3) neutralization of secreted H(+) in the luminal solution, or 4) ATP depletion. Addition of nutrient 10 mM NH(4)Cl (calculated NH(3) concentration = 92.5 microM and NH(4)(+) concentration = 9.91 mM) inhibited acid secretion within 30 min. Inhibition of acid secretion did not occur by blockade of basolateral K(+) channel activity or ion transport activity or by neutralization of the luminal solution. Although ATP depletion occurred in the presence of NH(4)Cl, the magnitude of ATP depletion in 30 min was not sufficient to inhibit stimulated acid secretion. By comparing the effect of NH(4)Cl on the resistance of inhibited or stimulated tissues, we demonstrate that NH(4)Cl acts specifically on stimulated tissues. We propose that NH(4)Cl blocks activity of an apical K(+) channel present in stimulated oxyntic cells. Our data suggest that the activity of this channel is important for the regulation of acid secretion in bullfrog oxyntic cells.
This study was conducted to determine the contribution of ion transport to restitution after injury in the gastric mucosa. For this, intact sheets of stomach from the bullfrog, Rana catesbeiana, were mounted in Ussing chambers. Restitution was evaluated in the presence or absence of ion transport inhibitors amiloride, DIDS, and bumetanide to block Na(+)/H(+) exchange, Cl(-)/HCO(3)(-) exchange and Na(+)/HCO(3)(-) co-transport, and Na(+)-K(+)-2Cl(-) cotransport, respectively. Ion substitution experiments with Na(+)-free, Cl(-)-free, and HCO(3)(-)-free solutions were also performed. Injury to the mucosa was produced with 1 M NaCl, and restitution was evaluated by recovery of transepithelial resistance (TER), mannitol flux, and morphology. Amiloride, bumetanide, Cl(-)-free, or HCO(3)(-)-free solutions did not affect restitution. In Na(+)-free solutions, recovery of TER and mannitol flux did not occur because surface cells did not attach to the underlying basement membrane. In contrast, all aspects of restitution were inhibited by DIDS, a compound that inhibits Na(+)-dependent HCO(3)(-) transport. Because HCO(3)(-)-free solutions did not inhibit restitution, it was concluded that DIDS must block a yet undefined pathway not involved in HCO(3)(-) ion transport but essential for cell migration after injury and restitution in the gastric mucosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.