In order to develop a test battery based on a variety of neurological systems in fish, three sensory systems (vision, olfaction, and lateral line) as well as nerve transmission (acetylcholine esterase) were analyzed in zebrafish (Danio rerio) embryos with respect to their suitability as a model for the screening of neurotoxic trace substances in aquatic ecosystems. As a selection of known or putative neurotoxic compounds, amidotrizoic acid, caffeine, cypermethrin, dichlorvos, 2,4-dinitrotoluene, 2,4-dichlorophenol, 4-nonylphenol, perfluorooctanoic acid, and perfluorooctane sulfonic acid were tested in the fish embryo test (OECD test guideline 236) to determine EC values, which were then used as maximum test concentration in subsequent neurotoxicity tests. Whereas inhibition of acetylcholinesterase was investigated biochemically both in vivo and in vitro (ex vivo), the sensory organs were studied in vivo by means of fluorescence microscopy and histopathology in 72- or 96-h-old zebrafish embryos, which are not regarded as protected developmental stages in Europe and thus - at least de jure - represent alternative test methods. Various steps of optimization allowed this neurotoxicity battery to identify neurotoxic potentials for five out of the nine compounds: Cypermethrin and dichlorvos could be shown to specifically modulate acetylcholinesterase activity; dichlorvos, 2,4-dichlorophenol, 4-nonylphenol, and perfluorooctane sulfonic acid led to a degeneration of neuromasts, whereas both vision and olfaction proved quite resistant to concentrations ≤ EC of all of the model neurotoxicants tested. Comparison of neurotoxic effects on acetylcholinesterase activity following in vivo and in vitro (ex vivo) exposure to cypermethrin provided hints to a specific enzyme-modulating activity of pyrethroid compounds. Enhancement of the neuromast assay by applying a simultaneous double-staining procedure and implementing a 4-scale scoring system (Stengel et al. 2017) led to reduced variability of results and better statistical resolution and allowed to differentiate location-dependent effects in single neuromasts. Since acetylcholinesterase inhibition and neuromast degeneration can be analyzed in 72- and 96-h-old zebrafish embryos exposed to neurotoxicants according to the standard protocol of the fish embryo toxicity test (OECD TG 236), the fish embryo toxicity test can be enhanced to serve as a sensitive neurotoxicity screening test in non-protected stages of vertebrates.
Muscle-invasive bladder cancer (MIBC) is characterized by high recurrence and rapid progression. Progression is linked to changes in glycan structures and altered levels of glycosyltransferases. The relationship of mRNA expression by glycosyltransferase genes B4GALT1 , EXT1 , MGAT5B , and POFUT1 to the probability of surviving MIBC after radical cystectomy has not yet been investigated. mRNA expression was analyzed using qRT-PCR in formalin-fixed and paraffin-embedded tumor samples (n = 105; 74% male patients and 26% female patients; median age = 72 years), correlated with histopathological variables, and evaluated by means of multivariable Cox regression analysis regarding to overall survival (OS), cancer-specific survival (CSS), and disease-free survival (DFS). Multivariable Cox regression analysis identified POFUT1 mRNA expression as superior prognostic marker, compared with currently used histological tumor stage methods, for CSS by MIBC patients following radical cystectomy. Thus, the patients with low POFUT1 mRNA were at a 4.9-fold greater risk for cancer-specific death according to the multivariable analysis (p = 0.0001). Low mRNA levels predicted poor survival according to the Kaplan-Meier analysis ((POFUT1:OS p = 0.0014; CSS p = 0.0007; DFS p = 0.0088); ( EXT1 :OS p = 0.0150; CSS p = 0.0130; DFS p = 0.0286); ( B4GALT1 :CSS p = 0.0134; DFS p = 0.0493)). A subgroup analysis of patients without lymph node metastasis (pN−; n = 73) indicated that low expression of POFUT1 predicted reduced OS (p = 0.0073), CSS (p = 0.0058,) and DSS (p = 0.0079). Low levels of POFUT1 mRNA are an independent prognostic indicator for OS and CSS in MIBC patients following radical cystectomy. This finding demonstrates the importance of altered glycosylation for the progress of MIBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.