Colorectal cancer is the third most common cancer in both men and women. It is estimated that in 2004, nearly 147,000 cases of colon and rectal cancer will be diagnosed in the USA, and approximately 57,000 people would die from the disease; however, only 44% of the eligible population undergoes any type of colorectal cancer screening. Many reasons have been identified for non-compliance, with key ones being patient comfort, bowel preparation and cost. Virtual colonoscopy derived from computed tomography (CT) images is gaining broader acceptance as a screening method for colorectal neoplasia. Our research suggests that computer-aided detection (CAD) as a second reader has great potential in improving polyp detection. The ColonCAD prototype presented in this paper was developed and tested on cases representative of the variability and quality in true clinical practice. Results of this study with 150 patients demonstrate that: the developed algorithm generalises well: the sensitivity for polyps > or = 6 mm is on average 90%; and the median false positive rate is a manageable 3 per volume.
Abstract.A novel approach for generating a set of features derived from properties of patterns of curvature is introduced as a part of a computer aided colonic polyp detection system. The resulting sensitivity was 84% with 4.8 false positives per volume on an independent test set of 72 patients (56 polyps). When used in conjunction with other features, it allowed the detection system to reach an overall sensitivity of 94% with a false positive rate of 4.3 per volume.
Virtual colonoscopy provides a safe, minimal-invasive approach to detect colonic polyps using medical imaging and computer graphics technologies. Residual stool and fluid are problematic for optimal viewing of the colonic mucosa. Electronic cleansing techniques combining bowel preparation, oral contrast agents, and image segmentation were developed to extract the colon lumen from computed tomography (CT) images of the colon. In this paper, we present a new electronic colon cleansing technology, which employs a hidden Markov random filed (MRF) model to integrate the neighborhood information for overcoming the non-uniformity problems within the tagged stool/fluid region. Prior to obtaining CT images, the patient undergoes a bowel preparation. A statistical method for maximum a posterior probability (MAP) was developed to identify the enhanced regions of residual stool/fluid. The method utilizes a hidden MRF Gibbs model to integrate the spatial information into the Expectation Maximization (EM) model-fitting MAP algorithm. The algorithm estimates the model parameters and segments the voxels iteratively in an interleaved manner, converging to a solution where the model parameters and voxel labels are stabilized within a specified criterion. Experimental results are promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.