Background & Aims Aberrant activation of βcatenin and Yes-associated protein 1 (Yap1) signaling pathways have been associated with development of multiple tumor types. Yap functions as a transcriptional co-activator by interacting with TEAD DNA binding proteins. We investigated the interactions among these pathways during hepatic tumorigenesis. Methods We used immunohistochemical analysis to determine expression of β-catenin and Yap1 in liver cancer specimens collected from patients in Europe and the US, consisting of 104 hepatocellular carcinoma (HCC), 62 intrahepatic cholangiocarcinoma (ICC), and 94 hepatoblastoma samples. We assessed βcatenin and Yap1 signaling and interactions in hepatoblastoma cell lines ((HuH6, HepG2, HepT1, HC-AFW1, HepG2, and HC-AFW1); proteins were knocked down with small interfering (si)RNAs and effects on proliferation and cell death were measured. Sleeping beauty-mediated hydrodynamic transfection was used to overexpress constitutively active forms of β catenin ( N90-βcatenin) and Yap1 (YapS127A) in livers of mice; tissues were collected and histologic and immunohistochemical analyses were performed. Results We observed nuclear localization of βcatenin and Yap1 in 79% of hepatoblastoma samples, but not in most HCC or ICC tissues. Yap1 and β catenin co-precipitated in hepatoblastoma but not HCC cells. siRNA-mediated knockdown of Yap1 or β catenin in hepatoblastoma cells reduced proliferation in an additive manner. Knockdown of Yap1 reduced its ability to co-activate transcription with βcatenin; βcatenin inhibitors inactivated Yap1. Overexpression of constitutively active forms of Yap1 and βcatenin in mouse liver led to rapid tumorigenesis, with 100% mortality by 11 weeks. Tumors cells expressed both proteins, and human hepatoblastoma cells expressed common targets of their 2 signaling pathways. Yap1 binding of TEAD factors was required for tumorigenesis in mice. Conclusions β catenin and the transcriptional regulator Yap1 interact physically and are activated in most human hepatoblastoma tissues; overexpression of activated forms of these proteins in livers of mice leads to rapid tumor development. Further analysis of these mice will allow further studies of these pathways in hepatoblastoma pathogenesis and could lead to the identification of new therapeutic targets.
Liver tumors are rare in children, and their diagnoses may be challenging particularly because of the lack of a current consensus classification system. Systematic central histopathological review of these tumors performed as part of the pediatric collaborative therapeutic protocols has allowed the identification of histologic subtypes with distinct clinical associations. As a result, histopathology has been incorporated within the Children's Oncology Group (COG) protocols, and only in the United States, as a risk-stratification parameter and for patient management. Therefore, the COG Liver Tumor Committee sponsored an International Pathology Symposium in March 2011 to discuss the histopathology and classification of pediatric liver tumors, and hepatoblastoma in particular, and work towards an International Pediatric Liver Tumors Consensus Classification that would be required for international collaborative projects. Twenty-two pathologists and experts in pediatric liver tumors, including those serving as central reviewers for the COG, European Socié té Internationale d'Oncologie Pé diatrique, Gesellschaft fü r Pä diatrische Onkologie und Hä matologie, and Japanese Study Group for Pediatric Liver Tumors protocols, as well as pediatric oncologists and surgeons specialized in this field, reviewed more than 50 pediatric liver tumor cases and discussed classic and newly reported entities, as well as criteria for their classification. This symposium represented the first collaborative step to develop a classification that may lead to a common treatment-stratification system incorporating tumor histopathology. A standardized, clinically meaningful classification will also be necessary to allow the integration of new biological parameters and to move towards clinical algorithms based on patient characteristics and tumor genetics, which should improve future patient management and outcome.
Edited by Eric FearonHepatoblastoma (HB) is associated with aberrant activation of the -catenin and Hippo/YAP signaling pathways. Overexpression of mutant -catenin and YAP in mice induces HBs that express high levels of c-Myc (Myc). In light of recent observations that Myc is unnecessary for long-term hepatocyte proliferation, we have now examined its role in HB pathogenesis using the above model. Although Myc was found to be dispensable for in vivo HB initiation, it was necessary to sustain rapid tumor growth. Gene expression profiling identified key molecular differences between myc ؉/؉ (WT) and myc ؊/؊ (KO) hepatocytes and HBs that explain these behaviors. In HBs, these included both Myc-dependent and Myc-independent increases in families of transcripts encoding ribosomal proteins, non-structural factors affecting ribosome assembly and function, and enzymes catalyzing glycolysis and lipid bio-synthesis. In contrast, transcripts encoding enzymes involved in fatty acid -oxidation were mostly down-regulated. Myc-independent metabolic changes associated with HBs included dramatic reductions in mitochondrial mass and oxidative function, increases in ATP content and pyruvate dehydrogenase activity, and marked inhibition of fatty acid -oxidation (FAO). Myc-dependent metabolic changes included higher levels of neutral lipid and acetylCoA in WT tumors. The latter correlated with higher histone H3 acetylation. Collectively, our results indicate that the role of Myc in HB pathogenesis is to impose mutually dependent changes in gene expression and metabolic reprogramming that are unattainable in non-transformed cells and that cooperate to maximize tumor growth.
H epatocellular carcinomas (HCC) and hepatoblastomas of childhood (HPBL) are two types of liver cancer with high mortality and morbidity and international prevalence. There have been several recent studies of patterns of gene expression and molecular classification of HCC. [1][2][3][4] The studies demonstrated that HCC can be clustered in subgroups of gene expression patterns that have different prognostic and clinical behavior. Other recent studies also examined similarities between HCC precursor lesions (low and high grade liver nodules) and demonstrated significant similarities but also differences between HCC and precursor lesions. 5 In this study, we also focused on gene expression of HCC and HPBL, but from a different perspective than previous studies. We utilized a set of tissues from normal liver (NL), HCC, HPBL and tumor adjacent (AT) tissues and determined gene expression patterns not as a ratio of tumor vs. normal, but rather as absolute separate values for each unique tissue. This allowed standard but stringent statistical analysis not feasible when gene expression is only viewed as a fold change over normal tissues. Identification of gene expression patterns of liver tumors from this perspective allows identification of the main differences between the tumor subtypes and the adjacent nontumor (but often cirrhotic) liver; it also offers the potential of defining new therapeutic and diagnostic modalities. Our findings include some genes already shown to increase in HCC, thus validating our overall approach. Our results also revealed many other genes, not so far involved with biology of liver tumors. In addition, we carried a whole genome analysis of 27 HCC and determined chromosomal loci with genetic abnormalities common to most of the HCC. Materials and MethodsSee Supplemental information at the HEPATOLOGY
SignificanceCircular RNAs (circRNAs) play critical physiologic functions, but it is not known whether human DNA viruses express circRNAs. We surveyed Epstein−Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV) tumors and cell lines, and found specific circRNAs expressed from both viruses. EBV circular BamHI A rightward transcripts (circBARTs) were expressed in all EBV tumor latency forms, including all EBV-infected posttransplant lymphoproliferative disease tumors tested, whereas EBV circBHLF1 and circLMP2 were more variably expressed. KSHV expressed circvIRF4 constitutively in primary effusion lymphoma cell lines, while the polyadenylated nuclear locus promiscuously generated variable, inducible, and bidirectional circRNAs. Tumor virus circRNAs can be long-lived, unique tumor biomarkers that may also open new research opportunities into understanding how these viruses cause cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.