Metabolite-protein interactions define the output of metabolic pathways and regulate many cellular processes. Although diseases are often characterized by distortions in metabolic processes, efficient means to discover and study such interactions directly in cells have been lacking. A stringent implementation of proteome-wide Cellular Thermal Shift Assay (CETSA) was developed and applied to key cellular nucleotides, where previously experimentally confirmed protein-nucleotide interactions were well recaptured. Many predicted, but never experimentally confirmed, as well as novel protein-nucleotide interactions were discovered. Interactions included a range of different protein families where nucleotides serve as substrates, products, co-factors or regulators. In cells exposed to thymidine, a limiting precursor for DNA synthesis, both dose- and time-dependence of the intracellular binding events for sequentially generated thymidine metabolites were revealed. Interactions included known cancer targets in deoxyribonucleotide metabolism as well as novel interacting proteins. This stringent CETSA based strategy will be applicable for a wide range of metabolites and will therefore greatly facilitate the discovery and studies of interactions and specificities of the many metabolites in human cells that remain uncharacterized.
Varicella zoster virus (VZV) is a highly infectious human herpesvirus that is the causative agent for chicken pox and shingles. VZV encodes a functional thymidylate synthase (TS), which is the sole enzyme that produces dTMP from dUMP de novo. To study substrate binding, the complex structure of TSVZV with dUMP was determined to a resolution of 2.9 Å. In the absence of a folate co-substrate, dUMP binds in the conserved TS active site and is coordinated similarly as in the human encoded TS (TSHS) in an open conformation. The interactions between TSVZV with dUMP and a cofactor analog, raltitrexed, were also studied using differential scanning fluorimetry (DSF), suggesting that TSVZV binds dUMP and raltitrexed in a sequential binding mode like other TS. The DSF also revealed interactions between TSVZV and in vitro phosphorylated brivudine (BVDUP), a highly potent anti-herpesvirus drug against VZV infections. The binding of BVDUP to TSVZV was further confirmed by the complex structure of TSVZV and BVDUP solved at a resolution of 2.9 Å. BVDUP binds similarly as dUMP in the TSHS but it induces a closed conformation of the active site. The structure supports that the 5-bromovinyl substituent on BVDUP is likely to inhibit TSVZV by preventing the transfer of a methylene group from its cofactor and the subsequent formation of dTMP. The interactions between TSVZV and BVDUP are consistent with that TSVZV is indeed a target of brivudine in vivo. The work also provided the structural basis for rational design of more specific TSVZV inhibitors.
Herpesviruses alternate between the latent and the lytic life cycle. Switching into the lytic life cycle is important for herpesviral replication and disease pathogenesis. Activation of a transcription factor replication and transcription activator (RTA) has been demonstrated to govern this switch in Kaposi's sarcomaassociated herpesvirus (KSHV). The protein encoded by open reading frame 49 from KSHV (ORF49 KSHV ) has been shown to upregulate lytic replication in KSHV by enhancing the activities of the RTA. We have solved the crystal structure of the ORF49 KSHV protein to a resolution of 2.4 Å. The ORF49 KSHV protein has a novel fold consisting of 12 alpha-helices bundled into two pseudodomains. Most notably are distinct charged patches on the protein surface, which are possible protein-protein interaction sites. Homologs of the ORF49 KSHV protein in the gammaherpesvirus subfamily have low sequence similarities. Conserved residues are mainly located in the hydrophobic regions, suggesting that they are more likely to play important structural roles than functional ones. Based on the identification and position of three sulfates binding to the positive areas, we performed some initial protein-DNA binding studies by analyzing the thermal stabilization of the protein in the presence of DNA. The ORF49 KSHV protein is stabilized in a dose-responsive manner by doublestranded oligonucleotides, suggesting actual DNA interaction and binding. Biolayer interferometry studies also demonstrated that the ORF49 KSHV protein binds these oligonucleotides. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a tumorigenic gammaherpesvirus that causes multiple cancers and lymphoproliferative diseases. The virus exists mainly in the quiescent latent life cycle, but when it is reactivated into the lytic life cycle, new viruses are produced and disease symptoms usually manifest. Several KSHV proteins play important roles in this reactivation, but their exact roles are still largely unknown. In this study, we report the crystal structure of the open reading frame 49 protein encoded by KSHV (ORF49 KSHV ). Possible regions for protein interaction that could harbor functional importance were found on the surface of the ORF49 KSHV protein. This led to the discovery of novel DNA binding properties of the ORF49 KSHV protein. Evolutionary conserved structural elements with the functional homologs of ORF49 KSHV were also established with the structure.
The aim of this project is to understand the various mechanisms contributing to drug resistance development in cancer therapy. The efficacy of therapeutics is dependent on a drug binding to its target. We have developed a method that allows for the first time to directly evaluate drug binding to target proteins in cells and tissue samples the cellular thermal shift assay (CETSA) (Martinez Molina et al. Science, 341:84). CETSA is based on the biophysical principle of ligand-induced thermal stabilization of target proteins. By monitoring the drug occupancy in the target protein, CETSA can be used to study processes of drug transport and metabolism in cancer cells. We have used CETSA to study the acquired drug resistance of, antifolate and fluropyrimidine drugs in pairs of parental and resistant cell lines. CETSA shifts and isothermal dose response fingerprint (ITDRF) were used to study the relative drug target engagement in these cells. Quantitative mass spectrometry was used to monitor differences in protein expression levels across the cell lines. Based on the CETSA measurements, resistant cells clearly showed a higher drug dose threshold as compared to the parent cell lines, typically requiring 8-50 times higher dose to establish similar target engagement. Several potential mechanism for drug resistant emerged - we, for example, observed up-regulation of thymidylate synthase and down regulation of reduced folate carrier (RFC) protein associated with antifolate transport, in some resistant cell lines. The data supports that CETSA is a potential valuable tool to dissect various mechanisms those contribute to resistant development in cancer cells. Citation Format: Lekshmy Kunjamma Usha Sreekumar, Yan Ting Lim, Saranya Veerappan, Par Nordlund. Exploring the potential of cellular thermal shift assay (CETSA) to study drug resistance during cancer therapy [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2045. doi:10.1158/1538-7445.AM2017-2045
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.