Linked Open Data (LOD) has emerged as one of the largest collections of interlinked structured datasets on the Web. Although the adoption of such datasets for applications is increasing, identifying relevant datasets for a specific task or topic is still challenging. As an initial step to make such identification easier, we provide an approach to automatically identify the topic domains of given datasets. Our method utilizes existing knowledge sources, more specifically Freebase, and we present an evaluation which validates the topic domains we can identify with our system. Furthermore, we evaluate the effectiveness of identified topic domains for the purpose of finding relevant datasets, thus showing that our approach improves reusability of LOD datasets.
BackgroundResearch on the biology of parasites requires a sophisticated and integrated computational platform to query and analyze large volumes of data, representing both unpublished (internal) and public (external) data sources. Effective analysis of an integrated data resource using knowledge discovery tools would significantly aid biologists in conducting their research, for example, through identifying various intervention targets in parasites and in deciding the future direction of ongoing as well as planned projects. A key challenge in achieving this objective is the heterogeneity between the internal lab data, usually stored as flat files, Excel spreadsheets or custom-built databases, and the external databases. Reconciling the different forms of heterogeneity and effectively integrating data from disparate sources is a nontrivial task for biologists and requires a dedicated informatics infrastructure. Thus, we developed an integrated environment using Semantic Web technologies that may provide biologists the tools for managing and analyzing their data, without the need for acquiring in-depth computer science knowledge.Methodology/Principal FindingsWe developed a semantic problem-solving environment (SPSE) that uses ontologies to integrate internal lab data with external resources in a Parasite Knowledge Base (PKB), which has the ability to query across these resources in a unified manner. The SPSE includes Web Ontology Language (OWL)-based ontologies, experimental data with its provenance information represented using the Resource Description Format (RDF), and a visual querying tool, Cuebee, that features integrated use of Web services. We demonstrate the use and benefit of SPSE using example queries for identifying gene knockout targets of Trypanosoma cruzi for vaccine development. Answers to these queries involve looking up multiple sources of data, linking them together and presenting the results.Conclusion/SignificanceThe SPSE facilitates parasitologists in leveraging the growing, but disparate, parasite data resources by offering an integrative platform that utilizes Semantic Web techniques, while keeping their workload increase minimal.
The Linked Open Data (LOD) cloud has gained significant attention in the Semantic Web community over the past few years. With rapid expansion in size and diversity, it consists of over 800 interlinked datasets with over 60 billion triples. These datasets encapsulate structured data and knowledge spanning over varied domains such as entertainment, life sciences, publications, geography, and government. Applications can take advantage of this by using the knowledge distributed over the interconnected datasets, which is not realistic to find in a single place elsewhere. However, two of the key obstacles in using the LOD cloud are the limited support for data integration tasks over concepts, instances, and properties, and relevant data source selection for querying over multiple datasets. We review, in brief, some of the important and interesting technical approaches found in the literature that address these two issues. We observe that the general purpose alignment techniques developed outside the LOD context fall short in meeting the heterogeneous data representation of LOD. Therefore, an LOD specific review of these techniques (especially for alignment) is important to the community. The topics covered and discussed in this article fall under two broad categories, namely alignment techniques for LOD datasets and relevant data source selection in the context of query processing over LOD datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.