Since 2010, there has been an increasing number of adverse analytical findings related to selective androgen receptor modulators (SARMs) in competitive sports. It emphasizes the importance of comprehensive doping control analytical procedures that are capable of detecting SARM misuse.Methods: In this study, it is described how LY2452473, a SARM, was metabolized in thoroughbred horses after a single-dose oral administration and in vitro with equine liver microsome preparations. An investigation of the metabolism of LY2452473 in horses' urine, plasma, and hair matrices was carried out during the study. The plausible structures of the detected metabolites were postulated using highperformance liquid chromatography-high resolution mass spectrometry.Results: Under the experimental conditions 15 metabolites (12 phase I and three conjugates of phase I) were detected (M1-M15). The major phase I metabolites identified were formed by hydroxylation. Side-chain dissociated and methylated metabolites were also detected. In phase II, the glucuronic acid and sulfonic acid conjugates of hydroxy LY2452473 were detected as the major metabolites. In vitro analysis has confirmed the presence of all metabolites found in vivo except for the methylated analogs M11 and M12. A peak concentration of LY2452473 (0.5 pg/mg) in proximal hair segments was achieved 4 weeks after administration, according to hair analysis.Conclusions: Data obtained will aid in identifying LY2452473 and related substances faster. Furthermore, the results will assist in checking for the illegal use of these substances in competitive sports. | INTRODUCTIONThe role of androgens in male sexual development and maintenance cannot be overstated. 1 Androgens are predominant in male reproductive organs, but also moderately expressed in female genitalia and ovaries, as well as in skin, sebaceous glands, sweat glands, hair follicles, cardiac muscles, skeletal muscles, and brain. 2 A risk of serious side effects, such as prostate cancer development and progression, has limited the use of steroidal androgens. [3][4][5] Selective androgen receptor modulators (SARMs) are tissue-specific to anabolic target tissues (muscle and bone) and do not have the side effects associated with conventional androgens. The basic idea of the SARMs is that they modulate the transcriptional activity of the androgen receptor in a tissue-selective fashion. These compounds are agonistic in their effects on target tissues such as muscle and bone, but weak in their effects on reproductive organs (prostate). The molecular
The major challenge in identifying dexamethasone, betamethasone, and paramethasone from a mixture of these corticosteroids is difficulty in achieving an efficient separation. In this study, we aimed to develop an efficient technique to identify these co-eluting isomers based on the mass spectral patterns of them and their corresponding phase II metabolites after electrospray ionization. Fragmentation pathways in tandem mass spectrometry revealed acceptable specificity within the groups of conjugates. The method was validated using individual isomers and mixtures at various compositions. The effects of concentration and collision energies on fragmentation patterns were also studied extensively. Matrix-fortified equine urine and plasma samples were also included so that matrix effects and interferences on fragmentation ratios could be elucidated. Preliminary results using biological samples demonstrated the suitability of this analytical strategy for direct measurement from their fragmentation patterns. Possible fragmentation pathways for each isomer were proposed.
An effective alternative to testosterone therapy is selective androgen receptor modulators, a class of compounds that has a tissue‐specific effect on muscle and bone. These drugs, which enhance performance, pose a severe abuse risk in competitive sports. GLPG0492 is one of the selective androgen receptor modulators discovered in recent decades. This compound has a unique tissue‐specific action for muscle and bone against steroid receptors and acts as a partial agonist for androgen receptors. This study examined GLPG0492 and its metabolites in vitro using equine liver microsomes. Liquid chromatography–high‐resolution mass spectrometry was utilized to determine the probable structures of detected metabolites. This study identified 39 metabolites of GLPG0492 (21 phase I and 18 phase II). The hydroxylation of GLPG0492 results in monohydroxylated and dihydroxylated metabolites. Additionally, the study detected dissociated side chains (3‐methyl and 4‐(hydroxymethyl)) and corresponding hydroxylated metabolites. A series of glucuronic acid‐ and sulfonic acid‐conjugated analogs of GLPG0492 were detected during phase II of the study. The findings might help in the detection of GLPG0492 and the elucidation of its illegal use in equestrian sports.
Pheniramine maleate (PA), an antihistamine, was determined by Differential Pulse Stripping voltammetry using nano polypyrrole (Ppy) and nano poly(3,4-ethylenedioxythiophene) (PEDOT) modified glassy carbon electrodes. The cyclic voltammetric behavior of pheniramine was studied in aqueous acidic, neutral and alkaline conditions. One well-defined oxidation peak was observed in the cyclic voltammograms at all pHs. The influence of pH, scan rate and concentration revealed irreversible electron transfer and the oxidation was diffusion controlled adsorption. The SEM analysis confirmed good accumulation of PA on the electrode surface. A systematic study of influence of various experimental parameters that affect the stripping voltammetric response was carried out and the maximum peak current conditions were arrived at. Calibration was made under maximum peak current conditions. The range of study was 0.05 to 0.4 μg/mL on Ppy/GCE and 0.025 to 0.4μg/mL on PEDOT/GCE and the lower limit of determination were 0.035μg/mL on Ppy/GCE and 0.016μg/mL on PEDOT/GCE. The suitability of the method for the determination of PA in pharmaceutical preparations and urine samples was also ascertained
Rationale: The formation of mass adducts is common during electrospray ionization mass spectrometry (ESI-MS). However, the mechanism that leads to adduct formation is poorly understood and difficult to control. Multiplication of mass adducts at once will adversely impact the sensitivity of mass analysis and cause misinterpretation of the level of detection. Prior studies on selective androgen receptor modulators (SARMs) revealed an immense mass adduct formation in both positive and negative ESI modes.Methods: In this study, additives in the mobile phases are investigated as a potential means of controlling mass adduct formation in various SARMs. Results:The first evidence of chloride adduct formation when SARMs are detected via ESI-MS has been reported in this research. A series of mobile phase combinations were tested to achieve the optimal condition for HPLC-MS. A comparison was also made between adduct formation on various grades of water used for preparing the mobile phase. A validation study using equine urine and plasma was also conducted to assess the suitability of the developed method. Conclusion:The results of this study will allow for a more accurate identification of SARMs, which will make it easier to investigate their illicit use in horse racing. | INTRODUCTIONIn mass spectrometers, molecule fragmentation is dependent on the stability of molecular ions. As a result, the fragmentation pattern of a molecule can be reproduced, and it contains valuable information about its chemical structure. The term adduct refers to a version of a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.