Rice MADS29 has recently been reported to cause programmed cell death of maternal tissues, the nucellus, and the nucellar projection during early stages of seed development. However, analyses involving OsMADS29 protein expression domains and characterization of OsMADS29 gain-of-function and knockdown phenotypes revealed novel aspects of its function in maintaining hormone homeostasis, which may have a role in the development of embryo and plastid differentiation and starch filling in endosperm cells. The MADS29 transcripts accumulated to high levels soon after fertilization; however, protein accumulation was found to be delayed by at least 4 days. Immunolocalization studies revealed that the protein accumulated initially in the dorsal-vascular trace and the outer layers of endosperm, and subsequently in the embryo and aleurone and subaleurone layers of the endosperm. Ectopic expression of MADS29 resulted in a severely dwarfed phenotype, exhibiting elevated levels of cytokinin, thereby suggesting that cytokinin biosynthesis pathway could be one of the major targets of OsMADS29. Overexpression of OsMADS29 in heterologous BY2 cells was found to mimic the effects of exogenous application of cytokinins that causes differentiation of proplastids to starch-containing amyloplasts and activation of genes involved in the starch biosynthesis pathway. Suppression of MADS29 expression by RNAi severely affected seed set. The surviving seeds were smaller in size, with developmental abnormalities in the embryo and reduced size of endosperm cells, which also contained loosely packed starch granules. Microarray analysis of overexpression and knockdown lines exhibited altered expression of genes involved in plastid biogenesis, starch biosynthesis, cytokinin signalling and biosynthesis.
MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, “What is their role in non-seed plants?” From the studies reviewed here it can be gathered that unlike seed plants, MIKCC genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC* genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution.
SummaryOsMADS29, a seed-specific transcription factor that affects grain filling and embryo development by regulating hormone homeostasis, requires homo- or heterodimerization with eleven other MADS proteins for its localization into the nucleus.
LONELY GUY has been previously characterized in flowering plants to be involved in the direct activation of cytokinins. In this study, the function of the only LONELY GUY gene (CvarLOG1) from unicellular green microalga Chlorella variabilis NC64A has been investigated. CvarLOG1 expressed mainly in the lag and log phases of growth and was confirmed to be a cytokinin-activating enzyme. Overexpression of CvarLOG1 in Chlorella led to extended life in culture by almost 10–20 days, creating a “stay-green” phenotype. In the transformed alga, the cell cycle was lengthened due to delayed entry into the G2/M phase contrary to the known role of cytokinins in stimulating G2/M transition possibly due to excessive levels of this hormone. However, due to the sustained growth and delayed senescence, there was an increase in cell number by 11% and in biomass by 46% at the stationary phase, indicating a potential application for the biofuel industry. The total carbohydrate and lipid yield increased by approximately 30 and 20%, respectively. RNA-Seq-based transcriptomic analysis revealed that the genes associated with light and dark reactions of photosynthesis were upregulated, which may be the reason for the increased biomass. These data show that LOG plays an essential role during the cell cycle and in the functioning of the chloroplast and that the pathway leading to direct activation of cytokinins via LOG is functional in algae.
AtR8 lncRNA was previously identified in the flowering plant Arabidopsis thaliana as an abundant Pol III-transcribed long non-coding RNA (lncRNA) of approximately 260 nt. AtR8 lncRNA accumulation is responsive to hypoxic stress and salicylic acid (SA) treatment in roots, but its function has not yet been identified. In this study, microarray analysis of an atr8 mutant and wild-type Arabidopsis indicated a strong association of AtR8 lncRNA with the defense response. AtR8 accumulation exhibited an inverse correlation with an accumulation of two WRKY genes (WRKY53/WRKY70) when plants were exposed to exogenous low SA concentrations (20 µM), infected with Pseudomonas syringae, or in the early stage of development. The highest AtR8 accumulation was observed 5 days after germination, at which time no WRKY53 or WRKY70 mRNA was detectable. The presence of low levels of SA resulted in a significant reduction of root length in atr8 seedlings, whereas wrky53 and wrky70 mutants exhibited the opposite phenotype. Taken together, AtR8 lncRNA participates in Pathogenesis-Related Proteins 1 (PR-1)-independent defense and root elongation, which are related to the SA response. The mutual regulation of AtR8 lncRNA and WRKY53/WRKY70 is mediated by Nonexpressor of Pathogenesis-Related Gene 1 (NPR1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.