Meteotsunamis are generated by meteorological events, particularly moving pressure disturbances due to squalls, thunderstorms, frontal passages and atmospheric gravity waves. Relatively small initial sea-level perturbations, of the order of a few centimetres, can increase significantly through multi-resonant phenomena to create destructive events through the superposition of different factors. The global occurrence of meteotsunamis and the different resonance phenomena leading to amplification of meteotsunamis are reviewed. Results from idealized numerical modelling and field measurements from southwest Australia are presented to highlight the relative importance of the different processes. It is shown that the main influence that leads to amplification of the initial disturbance is due to wave shoaling and topographic resonance. Although meteotsunamis are not catastrophic to the extent of major seismically induced basin-scale events, the temporal and spatial occurrence of meteotsunamis are higher than those of seismic tsunamis as the atmospheric disturbances responsible for the generation of meteotsunamis are more common. High-energy events occur only for very specific combinations of resonant effects. The rareness of such combinations is perhaps the main reason why destructive meteotsunamis are exceptional and observed only at a limited number of sites globally.
A 15 year (2000–2014) simulation of the oceans around Australia, with the shelf‐scale model ozROMS, was used to estimate the mean, seasonal, and interannual variability of the surface and subsurface boundary currents and associated inflows. The simulation clarified some previous points of uncertainty and provided new information previously unknown and this is listed here. In the Indian Ocean, flow through the Timor Passage was linked to southeast Australia through the Holloway (HLC), Leeuwin (LC), South Australian (SAC), and Zeehan (ZC) Currents. The main inflows were from the Indonesian Throughflow and Eastern Gyral Current in the north whilst the central and southern branches of the South Indian Counter Current (SICC) provided major (>60%) inflows to the LC in the west. The HLC at North‐west Cape was at a maximum in April–May and its annual cycle accounted for 70% of the seasonal variance of LC, SAC, and ZC. In the Pacific Ocean, the northern branches of the South Equatorial Current were the main inputs to initiate the Hiri and East Australian (EAC) Currents flowing north and south, respectively, at ∼15°S. Inflow from the South Caledonia Jet to the EAC was ∼35%. The Flinders Current (FC) contributed to the Leeuwin Undercurrent (LU) directly as a northward flow and LU was enhanced from inflow from the subsurface southern SICC in the west (∼32–33°S). The majority of LU flowed westward offshore between 24 and 29°S while ∼25% continued northward to the northwest shelf. All Australian surface boundary currents systems were enhanced during the 2011–2013 La Niña.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.