Phase-controlled synthesis of two-dimensional (2D) transition-metal chalcogenides (TMCs) at low temperatures with a precise thickness control has to date been rarely reported. Here, we report on a process for the phase-controlled synthesis of TiS2 (metallic) and TiS3 (semiconducting) nanolayers by atomic layer deposition (ALD) with precise thickness control. The phase control has been obtained by carefully tuning the deposition temperature and coreactant composition during ALD. In all cases, characteristic self-limiting ALD growth behavior with a growth per cycle (GPC) of ∼0.16 nm per cycle was observed. TiS2 was prepared at 100 °C using H2S gas as coreactant and was also observed using H2S plasma as a coreactant at growth temperatures between 150 and 200 °C. TiS3 was synthesized only at 100 °C using H2S plasma as the coreactant. The S2 species in the H2S plasma, as observed by optical emission spectroscopy, has been speculated to lead to the formation of the TiS3 phase at low temperatures. The control between the synthesis of TiS2 and TiS3 was elucidated by Raman spectroscopy, X-ray photoelectron spectroscopy, high-resolution electron microscopy, and Rutherford backscattering study. Electrical transport measurements showed the low resistive nature of ALD grown 2D-TiS2 (1T-phase). Postdeposition annealing of the TiS3 layers at 400 °C in a sulfur-rich atmosphere improved the crystallinity of the film and yielded photoluminescence at ∼0.9 eV, indicating the semiconducting (direct band gap) nature of TiS3. The current study opens up a new ALD-based synthesis route for controlled, scalable growth of transition-metal di- and tri-chalcogenides at low temperatures.
Atomically thin semiconductors hold great potential for nanoscale photonic and optoelectronic devices because of their strong light absorption and emission. Despite progress, their application in integrated photonics is hindered particularly by a lack of stable layered semiconductors emitting in the infrared part of the electromagnetic spectrum. Here we show that titanium trisulfide (TiS3), a layered van der Waals material consisting of quasi-1D chains, emits near infrared light centered around 0.91 eV (1360 nm). Its photoluminescence exhibits linear polarization anisotropy and an emission lifetime of 210 ps. At low temperature, we distinguish two spectral contributions with opposite linear polarizations attributed to excitons and defects. Moreover, the dependence on excitation power and temperature suggests that free and bound excitons dominate the excitonic emission at high and low temperatures, respectively. Our results demonstrate the promising properties of TiS3 as a stable semiconductor for optoelectronic and nanophotonic devices operating at telecommunication wavelengths.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
The scalable and conformal synthesis of two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructures is a persisting challenge for their implementation in next-generation devices. In this work, we report the synthesis of nanometer-thick 2D TMDC heterostructures consisting of TiS x -NbS x on both planar and 3D structures using atomic layer deposition (ALD) at low temperatures (200–300 °C). To this end, a process was developed for the growth of 2D NbS x by thermal ALD using ( tert -butylimido)-tris-(diethylamino)-niobium (TBTDEN) and H 2 S gas. This process complemented the TiS x thermal ALD process for the growth of 2D TiS x -NbS x heterostructures. Precise thickness control of the individual TMDC material layers was demonstrated by fabricating multilayer (5-layer) TiS x -NbS x heterostructures with independently varied layer thicknesses. The heterostructures were successfully deposited on large-area planar substrates as well as over a 3D nanowire array for demonstrating the scalability and conformality of the heterostructure growth process. The current study demonstrates the advantages of ALD for the scalable synthesis of 2D heterostructures conformally over a 3D substrate with precise thickness control of the individual material layers at low temperatures. This makes the application of 2D TMDC heterostructures for nanoelectronics promising in both BEOL and FEOL containing high-aspect-ratio 3D structures.
Niobium pentoxide was deposited using tBuN=Nb(NEt2)3 as niobium precursor by both thermal atomic layer deposition (ALD) and plasma-enhanced atomic layer deposition (PE-ALD) with H2O and O2 plasma as coreactants, respectively. The deposition temperature was varied between 150 and 350 °C in both ALD processes. Amorphous films were obtained in all cases. Self-limiting saturated growth was confirmed for both ALD processes along with high uniformity over a 200 mm Si wafer. The PE-ALD process enabled a higher growth per cycle (GPC) than the thermal ALD process (0.56 Å vs 0.38 Å at 200 °C, respectively), while the GPC decreases with increasing temperature in both cases. The high purity of the film was confirmed using Rutherford backscattering spectrometry, elastic recoil detection, and x-ray photoelectron spectroscopy, while the latter technique also confirmed the Nb+5 oxidation state of the niobium oxide films. The thermal ALD deposited films were substoichiometric due to the presence of oxygen vacancies (VO), of which a more dominant presence was observed with increasing deposition temperature. The PE-ALD deposited films were found to be near stoichiometric for all investigated deposition temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.