In the twenty-first century, globalisation made corporate boundaries invisible and difficult to manage. This new macroeconomic transformation caused by globalisation introduced new challenges for critical infrastructure management. By Security threats to critical infrastructure: the human… 4987 replacing manual tasks with automated decision making and sophisticated technology, no doubt we feel much more secure than half a century ago. As the technological advancement takes root, so does the maturity of security threats. It is common that today's critical infrastructures are operated by non-computer experts, e.g. nurses in health care, soldiers in military or firefighters in emergency services. In such challenging applications, protecting against insider attacks is often neither feasible nor economically possible, but these threats can be managed using suitable risk management strategies. Security technologies, e.g. firewalls, help protect data assets and computer systems against unauthorised entry. However, one area which is often largely ignored is the human factor of system security. Through social engineering techniques, malicious attackers are able to breach organisational security via people interactions. This paper presents a security awareness training framework, which can be used to train operators of critical infrastructure, on various social engineering security threats such as spear phishing, baiting, pretexting, among others.Keywords Critical infrastructure security · Security awareness · Cyber security training · Work-based security training · Security threats against critical infrastructure
Chatbots are intelligent conversational computer systems designed to mimic human conversation to enable automated online guidance and support. The increased benefits of chatbots led to their wide adoption by many industries in order to provide virtual assistance to customers. Chatbots utilise methods and algorithms from two Artificial Intelligence domains: Natural Language Processing and Machine Learning. However, there are many challenges and limitations in their application. In this survey we review recent advances on chatbots, where Artificial Intelligence and Natural Language processing are used. We highlight the main challenges and limitations of current work and make recommendations for future research investigation.
Natural language processing problems (such as speech recognition, text-based data mining, and text or speech generation) are becoming increasingly important. Before effectively approaching many of these problems, it is necessary to process the syntactic structures of the sentences. Syntactic parsing is the task of constructing a syntactic parse tree over a sentence which describes the structure of the sentence. Parse trees are used as part of many language processing applications. In this paper, we present a multi-lingual dependency parser. Using advanced deep learning techniques, our parser architecture tackles common issues with parsing such as long-distance head attachment, while using 'architecture engineering' to adapt to each target language in order to reduce the feature engineering often required for parsing tasks. We implement a parser based on this architecture to utilize transfer learning techniques to address important issues related with limited-resourced language. We exceed the accuracy of state-of-the-art parsers on languages with limited training resources by a considerable margin. We present promising results for solving core problems in natural language parsing, while also performing at state-of-the-art accuracy on general parsing tasks.
Chatbots are intelligent conversational computer systems designed to mimic human conversation to enable automated online guidance and support. The increased benefits of chatbots led to their wide adoption by many industries in order to provide virtual assistance to customers. Chatbots utilise methods and algorithms from two Artificial Intelligence domains: Natural Language Processing and Machine Learning. However, there are many challenges and limitations in their application. In this survey we review recent advances on chatbots, where Artificial Intelligence and Natural Language processing are used. We highlight the main challenges and limitations of current work and make recommendations for future research investigation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.