<span>One of the most significant and daunting activities in today's world is temperature prediction. The meteorologists traditionally predict temperature via some statistical models aimed to forecast the fluctuations that might have happened to atmospheric parameters such as temperature, humidity, etc. The main objective of this paper is to build an intelligent temperature prediction model of Erbil city in KRG/ Iraq based on a historical dataset from 1992 to 2016 in each year there are twelve months’ average temperature readings from (January to December). Hence to resolve this prediction problem an up-to-date deep learning neural network has been used, the network model is based on <span id="docs-internal-guid-850bd062-7fff-c6c8-9146-ba6427eb24e0" style="font-size: 9pt; font-family: 'Times New Roman'; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;">long short-term memory</span> (LSTM) as an artificial recurrent neural network (RNN) architecture which employed to estimate the future average temperature. The implementing model uses the dataset from real-time 30 weather stations deployed in the area of the city. The prediction performance of the proposed recurrent neural network model has been compared with some state of art algorithms like Adeline neural network, Autoregressive neural network (NAR), and <span id="docs-internal-guid-14d37b98-7fff-0f76-848f-ad9f89224f77" style="font-size: 9pt; font-family: 'Times New Roman'; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;"> generalized regression neural network</span> (GRNN). The results show that the proposed model based on deep learning gives minimum prediction error.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.