Search on the web, specifically fetching of the relevant content, has been paid attention to since the advent of the web and particularly in recent years due to the tremendous growth in the volume of data and web pages. This paper categorizes the search services from the early days of the web to the present into keyword search engines, semantic search engines, question answering systems, dialogue systems and chatbots. As the first generation of search engines, keyword search engines have adopted keyword-based techniques to find the web pages containing the query keywords and ranking search results. In contrast, semantic search engines try to find meaningful and accurate results on the meaning and relations of things. Question-answering systems aim to find precise answers to natural language questions rather than returning a ranked list of relevant sources. As a subset of question answering systems, dialogue systems target to interact with human users through a dialog expressed in natural language. As a subset of dialogue systems, chatbots try to simulate human-like conversations. The paper provides an overview of the typical aspects of the studied search services, including process models, data preparation and presentation, common methodologies and categories.
Finding similar entities among knowledge graphs is an essential research problem for knowledge integration and knowledge graph connection. This paper aims at finding semantically similar entities between two knowledge graphs. This can help end users and search agents more effectively and easily access pertinent information across knowledge graphs. Given a query entity in one knowledge graph, the proposed approach tries to find the most similar entity in another knowledge graph. The main idea is to leverage graph embedding, clustering, regression and sentence embedding. In this approach, RDF2Vec has been employed to generate vector representations of all entities of the second knowledge graph and then the vectors have been clustered based on cosine similarity using K medoids algorithm. Then, an artificial neural network with multilayer perception topology has been used as a regression model to predict the corresponding vector in the second knowledge graph for a given vector from the first knowledge graph. After determining the cluster of the predicated vector, the entities of the detected cluster are ranked through sentence-BERT method and finally the entity with the highest rank is chosen as the most similar one. To evaluate the proposed approach, experiments have been conducted on real-world knowledge graphs. The experimental results demonstrate the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.