An extension to the Fabry-Perot interferometric method is demonstrated to calculate the optical loss and the reflectivity for optical waveguides simultaneously. The method uses an excitation of the waveguide with a broadband amplified spontaneous emission source (a superluminescent diode in our case) and curve fitting to account for the change of input power, thereby simplifying the measurement procedure. The use of a broadband source as opposed to tunable lasers allows for simultaneous measurements over multiple wavelengths and decreased sensitivity to reflections in the cavity. Further, waveguides of different lengths are measured to calculate the optical loss and the reflectivity simultaneously. It is shown that, if the value for reflectivity is assumed, there could be a large error in the measurement of loss especially for short waveguides. Optical loss for ridge waveguides is measured and compared by using a tunable laser as the input source. The method can be used for a generic case where it is suspected that the input power changes during the measurement.
We have developed an ultra-broadband InAs/InGaAsP quantum-dot semiconductor optical amplifier around 1520 nm with the 3-dB bandwidth of 150 nm. The four-wave mixing process and multi-wavelength lasers have been demonstrated by using our QD-SOAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.