Modern Tibetan and Vertical (Traditional) Mongolian are scripts used by c.11m people, mostly within the People’s Republic of China. In terms of publicly available tools for NLP, these languages and their scripts are extremely low-resourced and under-researched. We set out firstly to survey the state of NLP for these languages, and secondly to facilitate research by historians and policy analysts working on Tibetan newspapers. Their primary need is to be able to carry out Named Entity Recognition (NER) in Modern Tibetan, a script which has no word or sentence boundaries and for which no segmenters have been developed. Working on LightTag, an online tagger using character-based modelling, we were able to produce gold-standard training data for NER for use with Modern Tibetan.
Modern Tibetan and Vertical (Traditional) Mongolian are scripts used by c.11m people, mostly within the People’s Republic of China. In terms of publicly available tools for NLP, these languages and their scripts are extremely low-resourced and under-researched. We set out firstly to survey the state of NLP for these languages, and secondly to facilitate research by historians and policy analysts working on Tibetan newspapers. Their primary need is to be able to carry out Named Entity Recognition (NER) in Modern Tibetan, a script which has no word or sentence boundaries and for which no segmenters have been developed. Working on LightTag, an online tagger using character-based modelling, we were able to produce gold-standard training data for NER for use with Modern Tibetan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.