The earth's future climate state is highly dependent upon changes in terrestrial C storage in response to rising concentrations of atmospheric CO₂. Here we show that consistently enhanced rates of net primary production (NPP) are sustained by a C-cascade through the root-microbe-soil system; increases in the flux of C belowground under elevated CO₂ stimulated microbial activity, accelerated the rate of soil organic matter decomposition and stimulated tree uptake of N bound to this SOM. This process set into motion a positive feedback maintaining greater C gain under elevated CO₂ as a result of increases in canopy N content and higher photosynthetic N-use efficiency. The ecosystem-level consequence of the enhanced requirement for N and the exchange of plant C for N belowground is the dominance of C storage in tree biomass but the preclusion of a large C sink in the soil.
An analytical model for stomatal conductance is proposed based on: (a) Fickian mass transfer of CO2 and H2O through stomata; (b) a biochemical photosynthesis model that relates intercellular CO2 to net photosynthesis; and (c) a stomatal model based on optimization for maximizing carbon gains when water losses represent a cost. Comparisons between the optimization-based model and empirical relationships widely used in climate models were made using an extensive gas exchange dataset collected in a maturing pine (Pinus taeda) forest under ambient and enriched atmospheric CO2. Key Results and Conclusion In this interpretation, it is proposed that an individual leaf optimally and autonomously regulates stomatal opening on short-term (approx. 10-min time-scale) rather than on daily or longer time-scales. The derived equations are analytical with explicit expressions for conductance, photosynthesis and intercellular CO2, thereby making the approach useful for climate models. Using a gas exchange dataset collected in a pine forest, it is shown that (a) the cost of unit water loss lambda (a measure of marginal water-use efficiency) increases with atmospheric CO2; (b) the new formulation correctly predicts the condition under which CO2-enriched atmosphere will cause increasing assimilation and decreasing stomatal conductance.
Using the economics of gas exchange, early studies derived an expression of stomatal conductance (g) assuming that water cost per unit carbon is constant as the daily loss of water in transpiration (fe) is minimized for a given gain in photosynthesis (fc). Other studies reached identical results, yet assumed different forms for the underlying functions and defined the daily cost parameter as carbon cost per unit water. We demonstrated that the solution can be recovered when optimization is formulated at time scales commensurate with the response time of g to environmental stimuli. The optimization theory produced three emergent gas exchange responses that are consistent with observed behaviour: (1) the sensitivity of g to vapour pressure deficit (D) is similar to that obtained from a previous synthesis of more than 40 species showing g to scale as 1 -m log(D), where m ∈ [0.5,0.6], (2) the theory is consistent with the onset of an apparent 'feed-forward' mechanism in g, and (3) the emergent non-linear relationship between the ratio of intercellular to atmospheric [CO2] (ci/ca) and D agrees with the results available on this response. We extended the theory to diagnosing experimental results on the sensitivity of g to D under varying ca.
We have measured submicron particles rather continuously since January 31st 1996 at a forest site in Southern Finland. Number size distribution data from the size range of 3-500 nm (particle diameter) are obtained every 10 minutes. This article attemps to give an overall view over diurnal pattern of submicron size distribution. We will show the typical ambient submicron particle size distribution as it is monitored at the site and, furthermore, we want to highlight some certain events that have been observed during the nine month period. Since the measurements are carried out inside forest, and there are no local sources of pollution nearby of the site, we have also to include the possibility to observe the formation of aerosol particles of biogenic origin.
Summary1. Quantification of stomatal responses to environmental variables, in particular to soil water status, is needed to model carbon and water exchange rates between plants and the atmosphere. 2. Models based on stomatal optimality theory successfully describe leaf gas exchange under different environmental conditions, but the effects of water availability on the key optimization parameter [the marginal water use efficiency (WUE), k = ¶A ⁄ ¶E] has resisted complete theoretical treatment. Building on previous optimal leaf gas exchange models, we developed an analytical equation to estimate k from gas exchange observations along gradients of soil water availability. This expression was then used in a meta-analysis of about 50 species to investigate patterns of variation in k. 3. Assuming that cuticular water losses are negligible k increases under mild water stress but decreases when severe water stress limits photosynthesis. When cuticular conductance is considered, however, k increases monotonically with increasing water stress, in agreement with previous theoretical predictions. Moreover, the shape of these response curves to soil water availability changes with plant functional type and climatic conditions. In general, k is lower in species grown in dry climates, indicating lower marginal WUE. 4. The proposed parameterization provides a framework to assess the responses of leaf gas exchange to changes in water availability. Moreover, the model can be extended to scale leaflevel fluxes to the canopy and ecosystem level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.