In this study, the impacts of co-pyrolyzing wood-based biomass from Ficus benghalensis with PET on liquid oil output, reactivity, and heating values were investigated. The effects of temperature on the product distribution of individual pyrolysis and the biomass-plastic ratio on co-pyrolysis were investigated. For individual pyrolysis, a maximum amount of 40.8 wt (%) liquid oil was obtained from biomass at 450°C. On the other hand, a maximum of 59.5 wt (%) liquid oil was obtained from PET at 500°C. The co-pyrolysis experiments were conducted by blending PET with biomass at different percentages, such as 20%, 40%, 60%, and 80%. At 60% addition of PET, a more positive synergistic effect was identified due to radical secondary reactions. In addition, the physical and chemical characterization studies conducted on pyrolysis oil showed that biomass and plastic materials could be used to make valuable chemicals.
The tremendous thermal and mechanical capabilities of carbon-based nanomaterials have drawn from researchers across the world. Composites reinforced with graphene nanoplatelets (GNPs), multiwall carbon nanotubes (MWCNT), and fullerenes (C20) were utilized in this study to increase their strength. A hot extrusion approach and a solution-based semipowder metallurgical technology were employed. Microscopically and mechanically, the samples were tested. Mechanical properties were assessed through the use of roughness and tensile tests. Even a small amount of nanocarbon (0.25 wt %) significantly improved the toughness and hardness qualities of AA7075. Composite reinforced with C20 was found to have higher hardness and yield strength than any other samples.
Increased population growth, industrialization, and modern culture create a variety of consequences, including environmental pollution, heavy metal accumulation, and decreasing energy resources. This perilous position necessitates the development of long-term energy resources and strategies to address environmental threats and power shortages. In this study, an investigation into the use of castor seed oil cake and waste tyres as a feed material for the copyrolysis process for yielding maximum oil production was performed. The copyrolysis experiments were performed by changing the mass percentage of waste tyres with oil cake to make different ratios of 100 : 0, 75 : 25, 50 : 50, 25 : 75, and 0 : 100. At 50 : 50 ratio, the maximum positive synergy on oil production was obtained. At that condition, a maximum of 59.8 wt% oil was produced and characterized to analyze its physiochemical properties. The coprocessing of the selected two feed materials enables the stabilization of the oil, as the produced oil has a lower oxygen content with a maximum heating value of 38.72 MJ/kg. The Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS) analysis of the oil showed the existence of aromatic hydrocarbons and phenolic elements. Adding waste tyres to the biomass improved the quality of the oil by increasing carbon content with reduced oxygen content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.