A wide range of microorganisms inhabit biocrusts of arctic and sub-arctic regions. These taxa live and thrive under extreme conditions and, moreover, play important roles in biogeochemical cycling. Nevertheless, their diversity and abundance remain ambiguous. Here, we studied microbial community composition in biocrusts from Svalbard and Iceland using amplicon sequencing and epifluorescence microscopy. Sequencing of 16S rRNA gene revealed the dominance of Chloroflexi in the biocrusts from Iceland and Longyearbyen, and Acidobacteria in the biocrusts from Ny-Ålesund and South Svalbard. Within the 18S rRNA gene sequencing dataset, Chloroplastida prevailed in all the samples with dominance of Trebouxiophyceae in the biocrusts from Ny-Ålesund and Embryophyta in the biocrusts from the other localities. Furthermore, cyanobacterial number of cells and biovolume exceeded the microalgal in the biocrusts. Community compositions in the studied sites were correlated to the measured chemical parameters such as conductivity, pH, soil organic matter and mineral nitrogen contents. In addition, co-occurrence analysis showed the dominance of positive potential interactions and, bacterial and eukaryotic taxa co-occurred more frequently together.
Summary The geographical distribution of organisms, such as the foundation kelp species Saccharina latissima, is mainly driven by temperature. Globally increasing sea surface temperature and further intensification of marine heatwaves have already resulted in local extinction of kelp populations worldwide. In the present study, we investigated temporal variation in the thermal susceptibility of S. latissima by assessing stress responses of field sporophytes sampled from Helgoland (German Bight) in June 2018, August 2018 and August 2019 in heatwave scenarios. We analyzed survival, growth, maximum quantum yield of photosystem II (Fv/Fm) and pigment composition. Survival decreased with increasing environmental and experimental temperatures. Growth revealed seasonal patterns, being higher in June than in August, whereas Fv/Fm decreased with increasing temperature, independent of the sampling time. We found an increase in the concentration of light harvesting pigments and in the de‐epoxidation state of the xanthophyll cycle with higher treatment temperature. This pattern was even more pronounced at higher environmental temperature prior to the experiment (June 2018 < August 2019 < August 2018). Our results show that the thermal tolerance of S. latissima towards heatwaves in summer is significantly affected by the environmental history it previously experienced.
Kelps act as ecosystem engineers on many polar rocky shore coastlines. The underwater light climate and temperature are the main drivers for their vertical and latitudinal distribution. With temperatures rising globally, an Arctic expansion of temperate kelp species and an accelerating glacial melt is predicted. It was our aim to investigate the effects of retreating glaciers and rising temperatures on the potential habitat of kelps in Arctic fjords. We analyzed the underwater light climate of areas being influenced by different stages of glacial retreat (sea-terminating glacier, land-terminating glacier, coastal water) in Arctic Kongsfjorden. We observed reduced light intensities and a changed spectral composition in glacial meltwater plumes, potentially resulting in an upward shift of the lower depth limit of kelp, counteracting the predicted biomass increase in the Arctic. Furthermore, we studied temperature-related changes in light-use characteristics in two kelp species (Alaria esculenta, Saccharina latissima) at 3 C, 7 C, and 11 C. Rising temperatures lead to a significant increase of the compensation irradiance of A. esculenta. The dark respiration of S. latissima increased significantly, correlating with a decreasing carbon content. We detected no differences in photosynthetic rates, although the chlorophyll a concentration of A. esculenta was $ 78% higher compared to S. latissima. Ultimately, temperatureinduced changes in kelps light-use characteristics might lead to a changed species composition, as we found A. esculenta better adapted to polar conditions. We conclude that the deterioration of the underwater light climate and the temperature increase may drive substantial changes of the future Arctic kelp forest structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.