Background.Rapid industrialization and anthropogenic activities such as the unmanaged use of agro-chemicals, fossil fuel burning and dumping of sewage sludge have caused soils and waterways to be severely contaminated with heavy metals. Heavy metals are non-biodegradable and persist in the environment. Hence, remediation is required to avoid heavy metal leaching or mobilization into environmental segments and to facilitate their extraction.Objectives.The present work briefly outlines the environmental occurrence of heavy metals and strategies for using microorganisms for bioremediation processes as reported in the scientific literature.Methods.Databases were searched from different libraries, including Google Scholar, Medline and Scopus. Observations across studies were then compared with the standards for discharge of environmental pollutants.Discussion.Bioremediation employs microorganisms for removing heavy metals. Microorganisms have adopted different mechanisms for bioremediation. These mechanisms are unique in their specific requirements, advantages, and disadvantages, the success of which depends chiefly upon the kind of organisms and the contaminants involved in the process.Conclusions.Heavy metal pollution creates environmental stress for human beings, plants, animals and other organisms. A complete understanding of the process and various alternatives for remediation at different steps is needed to ensure effective and economic processes.Competing interests.The authors declare no competing financial interests.
Mycoremediation is one of the biotechniques that recruits fungi to remove toxic pollutants from environment in an efficient and economical manner. Mushrooms, macro-fungi, are among the nature’s most important mycoremediators. Pleurotus species (also called oyster mushrooms) are considered to be the most popular and widely cultivated varieties worldwide and this might be attributed to their low production cost and higher yields. Apart from their nutritive and therapeutic properties, Pleurotus species have high biosorption potential due to their extensive biomass, i.e. mycelial production. The genus has been reported to accumulate high levels of heavy metals. The current state-of-the art review mainly summarises previous investigations carried out by researchers on different roles and mechanisms played by Pleurotus species on heavy metals mycoremediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.