Cervical cancer has become the third most common form of cancer in the in-universe, after the widespread breast cancer. Human papillomavirus risk of infection is linked to the majority of cancer cases. Preventive care, the most expensive way of fighting cancer, can protect about 37% of cancer cases. The Pap smear examination is a standard screening procedure for the initial screening of cervical cancer. However, this manual test procedure generates many false-positive outcomes due to individual errors. Various researchers have extensively investigated machine learning (ML) methods for classifying cervical Pap cells to enhance manual testing. The random forest method is the most popular method for anticipating features from a high-dimensional cancer image dataset. However, the random forest method can get too slow and inefficient for real-time forecasts when too many decision trees are used. This research proposed an efficient feature selection and prediction model for cervical cancer datasets using Boruta analysis and SVM method to deal with this challenge. A Boruta analysis method is used. It is improved from of random forest method and mainly discovers feature subsets from the data source that are significant to assigned classification activity. The proposed model’s primary aim is to determine the importance of cervical cancer screening factors for classifying high-risk patients depending on the findings. This research work analyses cervical cancer and various risk factors to help detect cervical cancer. The proposed model Boruta with SVM and various popular ML models are implemented using Python and various performance measuring parameters, i.e., accuracy, precision, F 1 – Score , and recall. However, the proposed Boruta analysis with SVM performs outstanding over existing methods.
Machine Learning (ML) is used in healthcare sectors worldwide. ML methods help in the protection of heart diseases, locomotor disorders in the medical data set. The discovery of such essential data helps researchers gain valuable insight into how to utilize their diagnosis and treatment for a particular patient. Researchers use various Machine Learning methods to examine massive amounts of complex healthcare data, which aids healthcare professionals in predicting diseases. In this research, we are using an online UCI dataset with 303 rows and 76 properties. Approximately 14 of these 76 properties are selected for testing, which is necessary to validate the performances of different methods. The isolation forest approach uses the data set’s most essential qualities and metrics to standardize the information for better precision. This analysis is based on supervised learning methods, i.e., Naive Bayes, SVM, Logistic regression, Decision Tree Classifier, Random Forest, and K- Nearest Neighbor. The experimental results demonstrate the strength of KNN with eight neighbours order to test the effectiveness, sensitivity, precision, and accuracy, F1-score; as compared to other methods, i.e., Naive Bayes, SVM (Linear Kernel), Decision Tree Classifier with 4 or 18 features, and Random Forest classifiers.
The rapid growth in the number of vehicles has led to traffic congestion, pollution, and delays in logistic transportation in metropolitan areas. IoT has been an emerging innovation, moving the universe towards automated processes and intelligent management systems. This is a critical contribution to automation and smart civilizations. Effective and reliable congestion management and traffic control help save many precious resources. An IoT-based ITM system set of sensors is embedded in automatic vehicles and intelligent devices to recognize, obtain, and transmit data. Machine learning (ML) is another technique to improve the transport system. The existing transport-management solutions encounter several challenges resulting in traffic congestion, delay, and a high fatality rate. This research work presents the design and implementation of an Adaptive Traffic-management system (ATM) based on ML and IoT. The design of the proposed system is based on three essential entities: vehicle, infrastructure, and events. The design utilizes various scenarios to cover all the possible issues of the transport system. The proposed ATM system also utilizes the machine-learning-based DBSCAN clustering method to detect any accidental anomaly. The proposed ATM model constantly updates traffic signal schedules depending on traffic volume and estimated movements from nearby crossings. It significantly lowers traveling time by gradually moving automobiles across green signals and decreases traffic congestion by generating a better transition. The experiment outcomes reveal that the proposed ATM system significantly outperformed the conventional traffic-management strategy and will be a frontrunner for transportation planning in smart-city-based transport systems. The proposed ATM solution minimizes vehicle waiting times and congestion, reduces road accidents, and improves the overall journey experience.
Cassava is a crucial food and nutrition security crop cultivated by small-scale farmers because it can survive in a brutal environment. It is a significant source of carbohydrates in African countries. Sometimes, Cassava crops can be infected by leaf diseases, affecting the overall production and reducing farmers’ income. The existing Cassava disease research encounters several challenges, such as poor detection rate, higher processing time, and poor accuracy. This research provides a comprehensive learning strategy for real-time Cassava leaf disease identification based on enhanced CNN models (ECNN). The existing Standard CNN model utilizes extensive data processing features, increasing the computational overhead. A depth-wise separable convolution layer is utilized to resolve CNN issues in the proposed ECNN model. This feature minimizes the feature count and computational overhead. The proposed ECNN model utilizes a distinct block processing feature to process the imbalanced images. To resolve the color segregation issue, the proposed ECNN model uses a Gamma correction feature. To decrease the variable selection process and increase the computational efficiency, the proposed ECNN model uses global average election polling with batch normalization. An experimental analysis is performed over an online Cassava image dataset containing 6256 images of Cassava leaves with five disease classes. The dataset classes are as follows: class 0: “Cassava Bacterial Blight (CBB)”; class 1: “Cassava Brown Streak Disease (CBSD)”; class 2: “Cassava Green Mottle (CGM)”; class 3: “Cassava Mosaic Disease (CMD)”; and class 4: “Healthy”. Various performance measuring parameters, i.e., precision, recall, measure, and accuracy, are calculated for existing Standard CNN and the proposed ECNN model. The proposed ECNN classifier significantly outperforms and achieves 99.3% accuracy for the balanced dataset. The test findings prove that applying a balanced database of images improves classification performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.