Characterizing the intermediate phenotypes, such as gene expression, that mediate genetic effects on complex diseases is a fundamental problem in human genetics. Existing methods utilize genotypic data and summary statistics to identify putative disease genes, but cannot distinguish pleiotropy from causal mediation and are limited by overly strong assumptions about the data. To overcome these limitations, we develop Causal Multivariate Mediation within Extended Linkage disequilibrium (CaMMEL), a novel Bayesian inference framework to jointly model multiple mediated and unmediated effects relying only on summary statistics. We show in simulation that CaMMEL accurately distinguishes between mediating and pleiotropic genes unlike existing methods. We applied CaMMEL to Alzheimer's disease (AD) and found 206 causal genes in sub-threshold loci (p < 10 −4 ). We prioritized 21 genes which mediate at least 5% of local genetic variance, disrupting innate immune pathways in AD.
For most complex traits, known genetic associations only explain a small fraction of the narrow sense heritability prompting intense debate on the genetic basis of complex traits. Joint analysis of all common variants together explains much of this missing heritability and reveals that large numbers of weakly associated loci are enriched in regulatory regions, but fails to identify specific regions or biological pathways. Here, we use epigenomic annotations across 127 tissues and cell types to investigate weak regulatory associations, the specific enhancers they reside in, their downstream target genes, their upstream regulators, and the biological pathways they disrupt in eight common diseases. We show weak associations are significantly enriched in disease-relevant regulatory regions across thousands of independent loci. We develop methods to control for LD between weak associations and overlap between annotations. We show that weak non-coding associations are additionally enriched in relevant biological pathways implicating additional downstream target genes and upstream disease-specific master regulators. Our results can help guide the discovery of biologically meaningful, but currently undetectable regulatory loci underlying a number of common diseases.
The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Here, we analyse 1000-Genome reference panel imputed genotype data on up to ~370,000 women and identify 389 independent signals (all P<5×10 -8 ) for age at menarche, a notable milestone in female pubertal development. In Icelandic data from deCODE, these signals explain ~7.4% of the population variance in age at menarche, corresponding to one quarter of the estimated heritability. We implicate over 250 genes via coding variation or associated gene expression, and demonstrate enrichment across genes active in neural tissues. We identify multiple rare variants near the imprinted genes MKRN3 and DLK1 that exhibit large effects on menarche only when paternally inherited. Disproportionate effects of variants on early or late puberty timing are observed: single variant and heritability estimates are larger for early than late puberty timing in females. The opposite pattern is seen in males, with larger estimates for late than early puberty timing. Mendelian randomization analyses indicate causal inverse associations, independent of BMI, between puberty timing and risks for breast and endometrial cancers in women, and prostate cancer in men. In aggregate, our findings reveal new complexity in the genetic regulation of puberty timing and support new causal links with adult cancer risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.