Protected areas are key to preserving biodiversity and maintaining ecosystem services. However, their ability to ensure long-term survival of threatened andendangered species varies across countries, regions and landscapes. Distribution surveys can beparticularly important for assessing the value of protected areas, and gauging their efficacy incatering to species-specific requirements. We assessed the conservation value of one such reserve for a charismatic yet globally endangered species, the red panda Ailurus fulgens,in the light of on-going land-use transformation in Nepal. We conducted field surveys forindirect signs of red pandas along forest trails in 25-km2 sampling grid cells (n = 54) of Dhorpatan Hunting Reserve, and confronted a set of ecological hypotheses to the data using hierarchical occupancy models. We estimated overall occupancy at Ψ(SE) = 0.41 (0.007), with relatively high site-level detectability [p = 0.93 (SE = 0.001)]. Our results show that despitebeing a subsistence form of small-scale resource use, extraction of bamboo and livestock grazing negatively affected panda occurrence, albeit at different intensities. The amount of bamboo cover,rather than the overall proportion of forest cover, had greater influence on the panda occurrence. Despite availability of bamboo cover, areas with bamboo extraction and anthropogenic disturbances were less likely to be occupied by pandas. Together, these results suggest that long-term persistence of red pandas in this reserve and elsewhere across the species’ range will require preventing commercial extractionof bamboo, coupled with case-specific regulation of anthropogenic exploitation of red panda habitats.
We identified the winter plant species consumed by red panda in the Dhorpatan Hunting Reserve of eastern Nepal and compared this to the early-summer diet which was determined previously by Panthi et al. (2012). In addition, we estimated the proximate nutritional content of the leaves identified in red panda diet for both seasons, and we used nutritional geometry to explore macronutrient balance of leaves from the two different sampling periods. We identified six different plants in winter scats, which were the same as found in the previously determined early-summer diet. Arundinaria spp. bamboos were the main species found (82.1 % relative frequency), followed by Acer spp. (6.3 %), Betula utilis (4.6 %), Quercus semicarpifolia (3.7 %), Berberis spp. (1.3 %), and lichens (1.0 %), leaving 2.0 % unidentified. Geometric analysis suggested that the macronutrient balance of seasonal diets were similar in nutrient balance to the most frequently consumed Arundinaria spp. Differences in macronutrient balance may indicate seasonal nutrient preferences, such as increased carbohydrate intake in winter for thermogenesis, and increased protein and lipid intake in early summer to support reproduction and lactation; however, these differences may also indicate differences in resource availability. Habitat conserved for red panda in the region should include sufficient Arundinaria spp. as well as lesser consumed plants which may serve as complimentary foods.
Reliable and sufficient information regarding status, distribution and habitat preference of red panda (Ailurus fulgens fulgens) is lacking in Nepal. The research activities on red panda in the mid-western Nepal are very limited, so the status of red panda in the region is quite unknown. The study conducted during May, 2013 in three Village Development Committees (VDCs) namely Godhemahadev, Malikathata and Tamti of Jumla district was an important step for providing vital information including distribution and habitat preference of this species. The study included the reconnaissance, key informants survey, interviews and consultation for the most potential area identification, opportunistic survey comprising the direct observation and indirect sign count method for the presence and distribution, habitat assessment consisting vegetation sampling and ocular estimation. The study revealed the presence of red panda in three forests namely Bahirepatan, Imilchadamar and Tyakot of Godhemahadev, Tamti and Malikathata VDCs respectively. The species was found distributed between 2880 and 3244 m with an average dropping encounter rate of 1.04 per hour of searching effort and 12 pellets per dropping. Red panda mostly preferred the habitat in the elevation range of 2900-3000 m with southwest facing steep slopes (36˚-45˚), associated with water sources at the distance of ≤100 m. Trees such as Acer spp., Betula utilis and Quercus semecarpifolia, shrub species of Elaeagnus parvifolia, Drepanostachyum spp. and Jasminum humile, and the herbs like Polygonatum cirrhifolium, Fragaria nubicola and Galium asperifolium were found to be the most preferred species by red panda. The red panda preferred the habitat with dense crown coverage (>20%-100%) and 31%-50% ground cover. Fallen logs (39%) were the most preferred substrate used for defecation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.