Abstract. Using the structure of Singer cycles in general linear groups, we prove that a conjecture of Zeng, Han and He (2007) holds in the affirmative in a special case, and outline a plausible approach to prove it in the general case. This conjecture is about the number of primitive σ-LFSRs of a given order over a finite field, and it generalizes a known formula for the number of primitive LFSRs, which, in turn, is the number of primitive polynomials of a given degree over a finite field. Moreover, this conjecture is intimately related to an open question of Niederreiter (1995) on the enumeration of splitting subspaces of a given dimension.
Abstract. We consider the problem of enumerating the number of irreducible transformation shift registers. We give an asymptotic formula for the number of irreducible transformation shift registers in some special cases. Moreover, we derive a short proof for the exact number of irreducible transformation shift registers of order two using a recent generalization of a theorem of Carlitz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.