Automated quantification of abnormalities associated with COVID-19 from chest CT could help clinicians evaluate the disease and assess its severity and progression. This study proposes measures of disease severity and a deep learning and deep reinforcement-based method to compute them.
Robust and fast detection of anatomical structures is a prerequisite for medical image analysis. Current solutions for anatomy detection are typically based on machine learning and are subject to several limitations, including the use of suboptimal feature engineering techniques and most importantly the use of computationally suboptimal search-schemes. To address these issues, we propose a method that follows a new paradigm by reformulating the detection problem as a behavior learning task for an artificial agent. We couple the modeling of the anatomy appearance and the object search in a unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis. In other words, an artificial agent is trained not only to distinguish the target anatomical object from the rest of the body but also how to find the object by learning and following an optimal navigation path to the target object in the imaged volumetric space. We evaluate our approach on 1487 3D-CT volumes from 532 patients and show that we significantly outperform state-of-the-art solutions on detecting several anatomical structures with no failed cases, while also improving the detection accuracy by 20-30%. Most importantly, we improve the detection-speed of the reference methods by 2-3 orders of magnitude, achieving unmatched real-time performance on large 3D-CT scans.
Chest X-ray is the most common medical imaging exam used to assess multiple pathologies. Automated algorithms and tools have the potential to support the reading workflow, improve efficiency, and reduce reading errors. With the availability of large scale data sets, several methods have been proposed to classify pathologies on chest X-ray images. However, most methods report performance based on random image based splitting, ignoring the high probability of the same patient appearing in both training and test set. In addition, most methods fail to explicitly incorporate the spatial information of abnormalities or utilize the high resolution images. We propose a novel approach based on location aware Dense Networks (DNetLoc), whereby we incorporate both high-resolution image data and spatial information for abnormality classification. We evaluate our method on the largest data set reported in the community, containing a total of 86,876 patients and 297,541 chest X-ray images. We achieve (i) the best average AUC score for published training and test splits on the single benchmarking data set (ChestX-Ray14 [1]), and (ii) improved AUC scores when the pathology location information is explicitly used. To foster future research we demonstrate the limitations of the current benchmarking setup [1] and provide new reference patient-wise splits for the used data sets. This could support consistent and meaningful benchmarking of future methods on the largest publicly available data sets.
Automatic liver segmentation in 3D medical images is essential in many clinical applications, such as pathological diagnosis of hepatic diseases, surgical planning, and postoperative assessment. However, it is still a very challenging task due to the complex background, fuzzy boundary, and various appearance of liver. In this paper, we propose an automatic and efficient algorithm to segment liver from 3D CT volumes. A deep image-to-image network (DI2IN) is first deployed to generate the liver segmentation, employing a convolutional encoder-decoder architecture combined with multi-level feature concatenation and deep supervision. Then an adversarial network is utilized during training process to discriminate the output of DI2IN from ground truth, which further boosts the performance of DI2IN. The proposed method is trained on an annotated dataset of 1000 CT volumes with various different scanning protocols (e.g., contrast and non-contrast, various resolution and position) and large variations in populations (e.g., ages and pathology). Our approach outperforms the state-of-the-art solutions in terms of segmentation accuracy and computing efficiency.
While deep convolutional neural networks (CNN) have been successfully applied for 2D image analysis, it is still challenging to apply them to 3D anisotropic volumes, especially when the within-slice resolution is much higher than the between-slice resolution and when the amount of 3D volumes is relatively small. On one hand, direct learning of CNN with 3D convolution kernels suffers from the lack of data and likely ends up with poor generalization; insufficient GPU memory limits the model size or representational power. On the other hand, applying 2D CNN with generalizable features to 2D slices ignores between-slice information. Coupling 2D network with LSTM to further handle the between-slice information is not optimal due to the difficulty in LSTM learning. To overcome the above challenges, we propose a 3D Anisotropic Hybrid Network (AH-Net) that transfers convolutional features learned from 2D images to 3D anisotropic volumes. Such a transfer inherits the desired strong generalization capability for withinslice information while naturally exploiting between-slice information for more effective modelling. The focal loss is further utilized for more effective end-to-end learning. We experiment with the proposed 3D AH-Net on two different medical image analysis tasks, namely lesion detection from a Digital Breast Tomosynthesis volume, and liver and liver tumor segmentation from a Computed Tomography volume and obtain the state-of-the-art results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.